4 research outputs found
Abrasion wear resistance of different artificial teeth opposed to metal and composite antagonists
One of the most important properties of artificial teeth is the abrasion wear resistance, which is determinant in the maintenance of the rehabilitation's occlusal pattern. OBJECTIVES: This in vitro study aims to evaluate the abrasion wear resistance of 7 brands of artificial teeth opposed to two types of antagonists. MATERIAL AND METHODS: Seven groups were prepared with 12 specimens each (BIOLUX & BL, TRILUX & TR, BLUE DENT & BD, BIOCLER & BC, POSTARIS & PO, ORTHOSIT & OR, GNATHOSTAR & GN), opposed to metallic (M & nickel-chromium alloy), and to composite antagonists (C & Solidex indirect composite). A mechanical loading device was used (240 cycles/min, 4 Hz speed, 10 mm antagonist course). Initial and final contours of each specimen were registered with aid of a profile projector (20x magnification). The linear difference between the two profiles was measured and the registered values were subjected to ANOVA and Tukey's test. RESULTS: Regarding the antagonists, only OR (M = 10.45 ± 1.42 µm and C = 2.77 ± 0.69 µm) and BC (M = 6.70 ± 1.37 µm and C = 4.48 ± 0.80 µm) presented statistically significant differences (p < 0.05). Best results were obtained with PO (C = 2.33 ± 0.91 µm and M = 1.78 ± 0.42 µm), followed by BL (C = 3.70 ± 1.32 µm and M = 3.70 ± 0.61 µm), statistically similar for both antagonists (p>0.05). Greater result variance was obtained with OR, which presented the worse results opposed to Ni-Cr (10.45 ± 1.42 µm), and results similar to the best ones against composite (2.77 ± 0.69 µm). CONCLUSIONS: Within the limitations of this study, it may be concluded that the antagonist material is a factor of major importance to be considered in the choice of the artificial teeth to be used in the prosthesis
Mechanical study of the implant/abutment connection using conventional screws and experimental conical screws
A proposta deste estudo foi avaliar o comportamento mecânico de dois designs de conexão implante/abutment; hexágono externo e triângulo interno, utilizando parafusos convencionais e parafusos experimentais cone morse. O estudo foi dividido em duas fases: na primeira, foi avaliado o efeito do carregamento mecânico na perda de torque dos parafusos. 40 implantes foram utilizados. Os implantes e abutments foram divididos em 4 grupos: Grupo 1: hexágono externo/parafuso convencional (HE); Grupo 2: triângulo interno/parafuso convencional (TI); Grupo 3: hexágono externo/parafuso cone morse (HECM); Grupo 4: triângulo interno/parafuso cone morse (TICM). Os abutments foram instalados em seus respectivos implantes com torque de aperto de 32Ncm; após intervalo de 10 minutos, foram medidos os valores dos torques de desaperto. Os abutments foram instalados novamente com torque de 32Ncm, e após 10 minutos foram carregados mecanicamente, simulando 1 ano de função oral normal; após o carregamento, os torques de desaperto dos parafusos foram medidos novamente. Os dados foram analisados com o teste one-way ANOVA, com nível de significância de p≤0,05%. Análises por microscopia óptica foram realizadas antes e após os ensaios. Na segunda fase, foi avaliada a resistência à flexão dos conjuntos implante/abutment. Os mesmos 40 conjuntos foram utilizados. Os testes foram realizados em máquina universal de ensaios, com célula de carga de 500 kgf, deslocamento de 1mm/min, e inclinação de 45°. A força máxima de flexão (FMF) e a força de ruptura (FR) foram determinadas. As informações coletadas foram analisadas com o teste one-way ANOVA, para p≤0,05. Análises por microscopia óptica foram realizadas para estudo dos componentes após os ensaios de resistência flexural. Os resultados sugeriram que houve diferença significante (p=0,000) na pré-carga residual antes e após carregamento mecânico entre os dois tipos de parafuso: os parafusos cone morse apresentaram torques de desaperto significativamente superiores aos apresentados pelos parafusos planos convencionais. Houve diferença significante nos resultados da FMF obtidos pelos parafusos planos convencionais e pelos parafusos cone morse (p=0,011), sendo que os conjuntos implante/abutment com parafusos cone morse apresentaram maior resistência à flexão. Para os resultados da FR houve influência significante do tipo de conexão (p=0,019), com melhores resultados para a conexão triângulo interno. Considerando as limitações deste estudo, concluiu-se que os parafusos cone morse apresentaram maiores torques de desaperto em comparação aos parafusos planos convencionais; que o design da conexão protética não teve influência significante sobre o torque de desaperto dos parafusos; que os parafusos cone morse obtiveram maiores valores de resistência à flexão, e que a conexão em triângulo interno obteve maiores valores para a força de ruptura.The purpose of this study was to evaluate the mechanical behavior of two implant/abutment connection designs; external hex and internal tri-channel, using conventional screws and experimental conical screws. The study was divided in two parts; the first evaluated the effect of mechanical loading in the torque loss of the screws. 40 implants were used. The implants and abutments were divided in 4 groups: Group 1: external hex/conventional screw (HE); Group 2: tri-channel/conventional screw (TI); Group 3: external hex/conical screw (HECM); Group 4: tri-channel/conical screw (TICM). The abutments were installed in their respective implants with a tightening torque of 32Ncm, after a 10 minute interval, loosening torque were measured. The abutments were installed again with a 32Ncm torque, and after 10 minutes, they were mechanically loaded, simulating 1 year of normal oral function; after loading, loosening torques of the screws were measured again. Data were analyzed with one-way ANOVA test, with significance level of p≤0,05. Optical microscopy analysis were performed before and after the tests. The second part evaluated the flexural resistance of the implant/abutment assemblies. The same 40 assemblies were used. The tests were performed in an universal testing machine, with a 500kgf load cell, 1mm/min displacement, and 45° angulation. Maximum bending moment (FMF) and rupture force (FR) were determined. Collected information were analyzed with one-way ANOVA test, for p≤0,05. Optical microscopy analysis were performed for study of the components after the flexural resistance tests. The results suggested that there were significant differences (p=0,000) in the residual preload before and after mechanical loading between the two types of screws: conical screws showed significantly higher loosening torques than conventional flat screws. There were significant differences in the FMF obtained by the conventional flat screws and by the conical screws (p=0,000); the implant/abutment assemblies with conical screws presented higher flexural resistance. For the FR results, there was significant influence of the type of connection (p=0,019); the tri-channel connection presented better results. Considering the limitations of this study, it was concluded that the conical screws presented higher loosening torques compared to conventional flat screws; the design of the implant/abutment connection presented no significant influence on the loosening torques of the screws; conical screws showed higher bending moment values; and the tri-channel connection obtained higher rupture force values
Biomechanical study of the implant/abutment connection in implants with internal tapered connectios
Conexões em cone morse foram desenvolvidas para melhorar as propriedades biomecânicas e reduzir os problemas mecânicos encontrados nos sistemas de hexágono externo e interno. Este trabalho apresenta os resultados de dois estudos que investigaram as propriedades biomecânicas da conexão implante/pilar protético em implantes do sistema cone morse. A proposta do primeiro estudo foi avaliar o efeito do carregamento mecânico na perda de torque de pilares protéticos do sistema cone morse, e o efeito de ciclos sucessivos de inserção/remoção no torque de remoção destes pilares. 69 implantes cônicos foram utilizados. Os implantes e pilares foram divididos em 4 grupos: grupos 1 e 3 receberam pilares sólidos, e os grupos 2 e 4(a,b) receberam os pilares com parafuso trespassante. Nos grupos 1 e 2 os torques de instalação foram medidos, os pilares foram removidos, e os torques de remoção foram medidos; dez ciclos de inserção/remoção foram realizados para cada conjunto implante/pilar. Nos grupos 3 e 4(a,b) os pilares foram instalados e carregados mecanicamente; os pilares foram removidos e os torques de remoção foram medidos; dez ciclos de inserção/carregamento mecânico/remoção foram realizados para cada conjunto implante/pilar. Os dados foram analizados com o teste de Student-Newman-Keuls, com um nível de significância de p ≤ 0,05%. A perda de torque foi maior nos grupos 4a e 2 (acima de 30%); seguidos pelo grupo 1 (10,5%); grupo 3 (5,4%); e grupo 4b (39% de ganho de torque). Todos os resultados foram significativamente diferentes. A comparação do número de ciclos mostrou que, com o aumento do número de ciclos de inserção/remoção, houve uma tendência de aumento na perda de torque, para todos os tipos de pilares e grupos. Concluiu-se que o carregamento mecânico aumentou o torque de remoção dos pilares carregados em comparação a pilares não-carregados, e que os valores dos torques de remoção decaíram conforme o número de ciclos de inserção/remoção aumentou. O objetivo do segundo estudo foi verificar se as diferenças estruturais entre os sistemas de implantes com conexão em hexágono internos e em cone morse influenciam sua resistência à fratura. Vinte implantes cônicos com dimensões de 4,4mm de diâmetro por 13mm de comprimento foram utilizados: 10 com conexão em hexágono interno (HI) e 10 com conexão em cone morse (CM) de 11,5°. Vinte pilares foram utilizados, 10 para os implantes HI (com um parafuso trespassante de fixação), e 10 para os implantes CM (sólidos). Os testes foram realizados em uma máquina universal de ensaios, com uma célula de carga de 500 kgf, deslocamento de 1mm/min, numa inclinação de 45° a força máxima de deformação (FMD) e a força de fratura (FF) foram analisadas. As informações coletadas foram analizadas com um teste paramétrico (teste \"t\" de Student, p ≤ 0,05). A média da FMD para os implantes CM [90.58(6.72)kgf] foi estatisticamente superior à média da FMD para os implantes HI [83.73(4.94)kgf] (p=0.0182). A média da FF para os implantes HI foi 79.86(4.77)kgf. Nenhum dos implantes CM fraturou. Por meio de microscopia óptica, verificou-se que as fraturas nos implantes HI sempre ocorreram no parafuso de fixação. Embora os implantes CM não tenham fraturado, eles sofreram deformações permanentes em sua plataforma e no pilar protético. É possível concluir que o desenho sólido dos pilares CM proporciona maior resistência à deformação e à fratura em comparação aos pilares HI.Internal tapered connections were developed to improve biomechanical properties and to reduce mechanical problems found in external and internal hex implants. This work presents the results of two studies that investigated the biomechanical properties of the implant/abutment connection in implants with internal tapered connections. The purpose of the first study was to evaluate the effect of mechanical loading on the torque loss of abutments with internal tapered connections, and the effect of repeated torque cycles on the removal torque of these abutments. 68 conical implants and two abutment types were used. The implants and abutments were divided into 4 groups: groups 1 and 3 received the solid abutments, groups 2 and 4(a,b) received the trespassing screw abutments. In groups 1 and 2 installation torques of the abutments were measured, the abutments were uninstalled, and removal torques were measured; ten insertion/removal cycles were performed for each implant/abutment assembly. In groups 3 and 4(a,b) the abutments were installed, mechanically loaded, uninstalled, and removal torques were measured; ten insertion/mechanical loading/removal cycles were performed for each implant/abutment assembly. Data were analyzed with the Student-Newman-Keuls test, with a significance level of p ≤ 0.05. Torque loss was greater in groups 4a and 2 (over 30%), followed by group 1 (10.5%), group 3 (5.4%) and group 4b (39% torque gain). All results were significantly different. The comparison of the number of cycles showed that, as the insertion/removal cycles increased, removal torques tended to be lower, for all abutment types and groups. It was concluded that mechanical loading increased loosening torque of loaded abutments in comparison to unloaded abutments, and removal torque values decrease as the number of insertion/removal cycles increase. The objective of the second study was to verify if the differences in the design of the internal hex and the internal tapered connection implant systems influence their fracture resistance. Twenty tapered implants with dimensions of 4.3mm X 13mm were utilized: 10 with an internal hex (IH) connection and 10 with an 11.5° conical tapered (CT) connection. Twenty abutments were utilized, 10 for the IH implants (with a trespassing fixation screw), and 10 for the CT implants (solid). The tests were carried out in a universal testing machine, with a 500kgf load cell, 1mm/min dislocation, and 45 degrees angulation. The maximum deformation force (MDF) and the fracture force (FF) were analyzed. The collected data were analyzed with a parametric test (Student\'s t, p<.05). The average MDF for the CT implants [90.58(6.72)kgf] was statistically higher than the average MDF for the IH implants [83.73(4.94)kgf] (p=0.0182). The average FF for the IH implants was 79.86(4.77)kgf. None of the CT implants fractured. By means of optical micrography, it was verified that the fractures in the IH implants occurred always in the fixation screw. Although the CT implants did not fracture, they showed permanent deformations in the abutment and in the platform. It is possible to conclude that the solid design of the CT abutments provides greater resistance to deformation and fracture when compared to the IH abutments