1,958 research outputs found
Increased plasma markers of oxidative stress are associated with coronary heart disease in males with diabetes mellitus and with 10-year risk in a prospective sample of males
Background: Increased oxidative stress is associated with coronary heart disease (CHD). We examined the association between plasma markers of oxidative stress and CHD in a cross-sectional sample of patients with diabetes and prospective CHD risk in a sample of men predominantly without diabetes.
Methods: Plasma total antioxidant status (TAOS) and the ratio of oxidized LDL (Ox-LDL) to LDL-cholesterol (LDL-C) were determined in a cross-section of 761 Caucasian individuals with diabetes (UDACS study). Plasma TAOS was also determined in 310 baseline samples from a 10-year prospective cohort of 3012 healthy males (NPHSII).
Results: Within UDACS, males with CHD had lower mean (SD) plasma TAOS [no CHD, 43.4 (13.2)%; CHD, 40.3 (13.8)%; P = 0.04]. The prevalence of CHD was higher in the lowest compared with the upper quartiles (32.7% vs 19.7%; P = 0.004). We observed a significant association between plasma Ox-LDL:LDL-C and CHD status [no CHD vs CHD, 16.9 (3.1) vs 19.3 (5.0) units/mmol; P = 0.04], with the prevalence of CHD being higher among men in the upper compared with lower quartiles (18.4% vs 35.1%; P = 0.003). No association was observed in females. In NPHSII, TAOS was lower in those who developed CHD [35.1 (8.0)% vs 37.1 (7.9)%; P = 0.04]. The odds ratio for CHD in the lowest compared with the upper quartile was 1.91 (95% confidence interval, 0.99–3.70; P = 0.04). This remained unchanged after adjustment for classic risk factors.
Conclusions: A cross-sectional and prospective association exists between baseline plasma measures of oxidative stress and CHD risk. The association with prospective CHD risk remained after adjustment for "traditional" risk factors, implying an independent role for oxidative stress in CHD risk
Recommended from our members
Locating Ground-Water Discharge in the Hanford Reach of the Columbia River
A bottom-contacting probe for measuring electrical conductivity at the sediment-water interface was used to scan the bed of the Columbia River adjacent to the Hanford Site in southeast Washington State during a 10-day investigation. Four river-sections, each about a kilometer in length, were scanned for variations in electrical conductivity. The probe was towed along the riverbed at a speed of 1 m/s and is position was recorded using a Global Positioning System. The bottom tows revealed several areas of elevated electrical conductivity. Where these anomalies were relatively easy to access, piezometers were driven into the riverbed and porewater electrical conductivity ranged from 111 to 150 uS/cm. The piezometers, placed in electrical conductivity “hotspots,” yielded chemical or isotopic data consistent with previous analyses of water taken from monitoring wells and visible shoreline seeps. Tritium, nitrate, and chromium exceeded water quality standards in some porewaters. The highest tritium and nitrate levels were found near the Old Hanford Townsite at 120,000 pCi/L (+ 5,880 pCi/L total propagated analytical uncertainty) and ug/L (+ 5,880 ug/L), respectively. The maximum chromium (total and hexavalent) levels were found near 100-H reactor area where unfiltered porewater total chromium was 1,900 ug/L (+ 798 ug/L) and hexavalent chromium was 20 ug/L. The electrical conductivity probe provided rapid, cost-effective reconnaissance for ground-water discharge areas when used in combination with conventional piezometers. It may be possible to obtain quantitative estimates of both natural and contaminated ground-water discharge in the Hanford Reach with more extensive surveys of river bottom
Impact of Roots
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66547/2/10.1177_002193478601600306.pd
Haplotyping the human leukocyte antigen system from single chromosomes
We describe a method for determining the parental HLA haplotypes of a single individual without recourse to conventional segregation genetics. Blood samples were cultured to identify and sort chromosome 6 by bivariate flow cytometry. Single chromosome 6 amplification products were confirmed with a single nucleotide polymorphism (SNP) array and verified by deep sequencing to enable assignment of both alleles at the HLA loci, defining the two haplotypes. This study exemplifies a rapid and efficient method of haplotyping that can be applied to any chromosome pair, or indeed all chromosome pairs, using a single sorting operation. The method represents a cost-effective approach to complete phasing of SNPs, which will facilitate a deeper understanding of the links between SNPs, gene regulation and protein function
Vortices and dynamics in trapped Bose-Einstein condensates
I review the basic physics of ultracold dilute trapped atomic gases, with
emphasis on Bose-Einstein condensation and quantized vortices. The hydrodynamic
form of the Gross-Pitaevskii equation (a nonlinear Schr{\"o}dinger equation)
illuminates the role of the density and the quantum-mechanical phase. One
unique feature of these experimental systems is the opportunity to study the
dynamics of vortices in real time, in contrast to typical experiments on
superfluid He. I discuss three specific examples (precession of single
vortices, motion of vortex dipoles, and Tkachenko oscillations of a vortex
array). Other unusual features include the study of quantum turbulence and the
behavior for rapid rotation, when the vortices form dense regular arrays.
Ultimately, the system is predicted to make a quantum phase transition to
various highly correlated many-body states (analogous to bosonic quantum Hall
states) that are not superfluid and do not have condensate wave functions. At
present, this transition remains elusive. Conceivably, laser-induced synthetic
vector potentials can serve to reach this intriguing phase transition.Comment: Accepted for publication in Journal of Low Temperature Physics,
conference proceedings: Symposia on Superfluids under Rotation (Lammi,
Finland, April 2010
Influence of uniaxial tensile stress on the mechanical and piezoelectric properties of short-period ferroelectric superlattice
Tetragonal ferroelectric/ferroelectric BaTiO3/PbTiO3 superlattice under
uniaxial tensile stress along the c axis is investigated from first principles.
We show that the calculated ideal tensile strength is 6.85 GPa and that the
superlattice under the loading of uniaxial tensile stress becomes soft along
the nonpolar axes. We also find that the appropriately applied uniaxial tensile
stress can significantly enhance the piezoelectricity for the superlattice,
with piezoelectric coefficient d33 increasing from the ground state value by a
factor of about 8, reaching 678.42 pC/N. The underlying mechanism for the
enhancement of piezoelectricity is discussed
Adaptation of Left Ventricular Twist Mechanics in Exercise-Trained Children Is Only Evident after the Adolescent Growth Spurt.
The extent of structural cardiac remodeling in response to endurance training is maturity dependent. In adults, this structural adaptation is often associated with the adaptation of left ventricular (LV) twist mechanics. For example, an increase in LV twist often follows an expansion in end-diastolic volume, whereas a reduction in twist may follow a thickening of the LV walls. While structural cardiac remodeling has been shown to be more prominent post-peak height velocity (PHV), it remains to be determined how this maturation-dependent structural remodeling influences LV twist. Therefore, we aimed to (1) compare LV twist mechanics between trained and untrained children pre- and post-PHV and (2) investigate how LV structural variables relate to LV twist mechanics pre- and post-PHV.
Left ventricular function and morphology were assessed (echocardiography) in endurance-trained and untrained boys (n = 38 and n = 28, respectively) and girls (n = 39 and n = 34, respectively). Participants were categorized as either pre- or post-PHV using maturity offset to estimate somatic maturation.
Pre-PHV, there were no differences in LV twist or torsion between trained and untrained boys (twist: P = .630; torsion: P = .382) or girls (twist: P = .502; torsion: P = .316), and LV twist mechanics were not related with any LV structural variables (P > .05). Post-PHV, LV twist was lower in trained versus untrained boys (P = .004), with torsion lower in trained groups, irrespective of sex (boys: P < .001; girls: P = .017). Moreover, LV torsion was inversely related to LV mass (boys: r = -0.55, P = .001; girls: r = -0.46, P = .003) and end-diastolic volume (boys: r = -0.64, P < .001; girls: r = -0.36, P = .025) in both sexes.
A difference in LV twist mechanics between endurance-trained and untrained cohorts is only apparent post-PHV, where structural and functional remodeling were related
Quantum Hall Effect in Three-dimensional Field-Induced Spin Density Wave Phases with a Tilted Magnetic Field
The quantum Hall effect in the three-dimensional anisotropic tight-binding
electrons is investigated in the field-induced spin density wave phases with a
magnetic field tilted to any direction. The Hall conductivity,
and , are shown to be quantized as a function of the wave vector
of FISDW, while stays zero, where is the most conducting
direction and and are perpendicular to .Comment: 18 pages, REVTeX 3.0, 1 figure is available upon request, to be
published in Physical Review
Superconducting fluctuations and the Nernst effect: A diagrammatic approach
We calculate the contribution of superconducting fluctuations above the
critical temperature to the transverse thermoelectric response
, the quantity central to the analysis of the Nernst effect. The
calculation is carried out within the microscopic picture of BCS, and to linear
order in magnetic field. We find that as , the dominant contribution
to arises from the Aslamazov-Larkin diagrams, and is equal to the
result previously obtained from a stochastic time-dependent Ginzburg-Landau
equation [Ussishkin, Sondhi, and Huse, arXiv:cond-mat/0204484]. We present an
argument which establishes this correspondence for the heat current. Other
microscopic contributions, which generalize the Maki-Thompson and density of
states terms for the conductivity, are less divergent as .Comment: 11 pages, 5 figure
Shake-up Processes in a Low-Density Two-Dimensional Electron Gas: Spin-Dependent Transitions to Higher Hole Landau Levels
A theory of shake-up processes in photoabsorption of an interacting
low-density two-dimensional electron gas (2DEG) in strong magnetic fields is
presented. In these processes, an incident photon creates an electron-hole pair
and, because of Coulomb interactions, simultaneously excites one particle to
higher Landau levels (LL's). In this work, the spectra of correlated charged
spin-singlet and spin-triplet electron-hole states in the first hole LL and
optical transitions to these states (i.e., shake-ups to the first hole LL) are
studied. Our results indicate, in particular, the presence of optically-active
three-particle quasi-discrete states in the exciton continuum that may give
rise to surprisingly sharp Fano resonances in strong magnetic fields. The
relation between shake-ups in photoabsorption of the 2DEG and in the 2D hole
gas (2DHG), and shake-ups of isolated negative X^- and positive X^+ trions are
discussed.Comment: 8 pages, 8 figures. References updated, one figure added (Fig. 6).
Accepted in Phys. Rev.
- …