1,114 research outputs found
Local three-nucleon interaction from chiral effective field theory
The three-nucleon (NNN) interaction derived within the chiral effective field
theory at the next-to-next-to-leading order (N2LO) is regulated with a function
depending on the magnitude of the momentum transfer. The regulated NNN
interaction is then local in the coordinate space, which is advantages for some
many-body techniques. Matrix elements of the local chiral NNN interaction are
evaluated in a three-nucleon basis. Using the ab initio no-core shell model
(NCSM) the NNN matrix elements are employed in 3H and 4He bound-state
calculations.Comment: 17 pages, 9 figure
Off-shell Behavior of the Mixing Amplitude
We extend a recent calculation of the momentum dependence of the
mixing amplitude to the pseudoscalar sector. The
mixing amplitude is calculated in a hadronic model where the mixing is driven
by the neutron-proton mass difference. Closed-form analytic expressions are
presented in terms of a few nucleon-meson parameters. The observed momentum
dependence of the mixing amplitude is strong enough as to question earlier
calculations of charge-symmetry-breaking observables based on the on-shell
assumption. The momentum dependence of the amplitude is,
however, practically identical to the one recently predicted for
mixing. Hence, in this model, the ratio of pseudoscalar to vector mixing
amplitudes is, to a good approximation, a constant solely determined from
nucleon-meson coupling constants. Furthermore, by selecting these parameters in
accordance with charge-symmetry-conserving data and SU(3)-flavor symmetry, we
reproduce the momentum dependence of the mixing amplitude
predicted from chiral perturbation theory. Alternatively, one can use
chiral-perturbation-theory results to set stringent limits on the value of the
coupling constant.Comment: 13 pages, Latex with Revtex, 3 postscript figures (not included)
available on request, SCRI-03089
Charge-Symmetry Breaking and the Two-Pion-Exchange Two-Nucleon Interaction
Charge-symmetry breaking in the nucleon-nucleon force is investigated within
an effective field theory, using a classification of isospin-violating
interactions based on power-counting arguments. The relevant
charge-symmetry-breaking interactions corresponding to the first two orders in
the power counting are discussed, including their effects on the 3He-3H
binding-energy difference. The static charge-symmetry-breaking potential linear
in the nucleon-mass difference is constructed using chiral perturbation theory.
Explicit formulae in momentum and configuration spaces are presented. The
present work completes previously obtained results.Comment: 15 pages, 2 figure
Does The 3N-Force Have A Hard Core?
The meson-nucleon dynamics that generates the hard core of the RuhrPot
two-nucleon interaction is shown to vanish in the irreducible 3N force. This
result indicates a small 3N force dominated by conventional light
meson-exchange dynamics and holds for an arbitrary meson-theoretic Lagrangian.
The resulting RuhrPot 3N force is defined in the appendix. A completely
different result is expected when the Tamm-Dancoff/Bloch-Horowitz procedure is
used to define the NN and 3N potentials. In that approach, (e.g. full Bonn
potential) both the NN {\it and} 3N potentials contain non-vanishing
contributions from the coherent sum of meson-recoil dynamics and the
possibility of a large hard core requiring explicit calculation cannot be ruled
out.Comment: 16 pages REVTeX + 3 ps fig
Temperature and Density Effects on the Nucleon Mass Splitting
The finite temperature and finite density dependence of the neutron-proton
mass difference is analysed in a purely hadronic framework where the
mixing is crucial for this isospin symmetry breakdown. The
problem is handled within Thermo Field Dynamics. The present results,
consistent with partial chiral and charge symmetry restoration, improve the
experimental data fit for the energy difference between mirror nuclei.Comment: 17 pages, revtex fil
Charge-Asymmetry of the Nucleon-Nucleon Interaction
Based upon the Bonn meson-exchange model for the nucleon-nucleon ()
interaction, we study systematically the charge-symmetry-breaking (CSB) of the
interaction due to nucleon mass splitting. Particular attention is payed
to CSB generated by the -exchange contribution to the interaction,
diagrams, and other multi-meson-exchanges. We calculate the CSB
differences in the effective range parameters as well as phase shift
differences in , and higher partial waves up to 300 MeV lab. energy. We
find a total CSB difference in the singlet scattering length of 1.6 fm which
explains the empirical value accurately. The corresponding CSB phase-shift
differences are appreciable at low energy in the state. In the other
partial waves, the CSB splitting of the phase shifts is small and increases
with energy, with typical values in the order of 0.1 deg at 300 MeV in and
waves.Comment: 11 pages, RevTex, 14 figure
A Repeated Measures Experiment of Green Exercise to Improve Self-Esteem in UK School Children
Exercising in natural, green environments creates greater improvements in adult's self-esteem than exercise undertaken in urban or indoor settings. No comparable data are available for children. The aim of this study was to determine whether so called 'green exercise' affected changes in self-esteem; enjoyment and perceived exertion in children differently to urban exercise. We assessed cardiorespiratory fitness (20 m shuttle-run) and self-reported physical activity (PAQ-A) in 11 and 12 year olds (n = 75). Each pupil completed two 1.5 mile timed runs, one in an urban and another in a rural environment. Trials were completed one week apart during scheduled physical education lessons allocated using a repeated measures design. Self-esteem was measured before and after each trial, ratings of perceived exertion (RPE) and enjoyment were assessed after completing each trial. We found a significant main effect (F (1,74), = 12.2, p<0.001), for the increase in self-esteem following exercise but there was no condition by exercise interaction (F (1,74), = 0.13, p = 0.72). There were no significant differences in perceived exertion or enjoyment between conditions. There was a negative correlation (r = -0.26, p = 0.04) between habitual physical activity and RPE during the control condition, which was not evident in the green exercise condition (r = -0.07, p = 0.55). Contrary to previous studies in adults, green exercise did not produce significantly greater increases in self-esteem than the urban exercise condition. Green exercise was enjoyed more equally by children with differing levels of habitual physical activity and has the potential to engage less active children in exercise. © 2013 Reed et al
Three-Nucleon Force Effects in Nucleon Induced Deuteron Breakup: Predictions of Current Models (I)
An extensive study of three-nucleon force effects in the entire phase space
of the nucleon-deuteron breakup process, for energies from above the deuteron
breakup threshold up to 200 MeV, has been performed. 3N Faddeev equations have
been solved rigorously using the modern high precision nucleon-nucleon
potentials AV18, CD Bonn, Nijm I, II and Nijm 93, and also adding 3N forces. We
compare predictions for cross sections and various polarization observables
when NN forces are used alone or when the two pion-exchange Tucson-Melbourne
3NF was combined with each of them. In addition AV18 was combined with the
Urbana IX 3NF and CD Bonn with the TM' 3NF, which is a modified version of the
TM 3NF, more consistent with chiral symmetry. Large but generally model
dependent 3NF effects have been found in certain breakup configurations,
especially at the higher energies, both for cross sections and spin
observables. These results demonstrate the usefulness of the kinematically
complete breakup reaction in testing the proper structure of 3N forces.Comment: 42 pages, 20 ps figures, 2 gif figure
Sigma-fields x Chiral Scalars in Nuclear Three Body Potentials
The scalar-isoscalar field of an effective chiral Lagrangian transforms
differently in either linear or non-linear frameworks: in the former case it is
the counterpart of the pion whereas in the latter it is chiral invariant on its
own. We compare the predictions from these two models for nucleon interactions
and find results which are identical for two-body and rather different for
three-body potentials. Some qualitative features of three-body interactions are
discussed.Comment: Latex, 22 pages, 7 figures appended with epsf.sty, to be appear in
Phys. Rev
The Off Shell - Mixing in the QCD Sum Rules
The dependence of the mixing amplitude is analyzed with
the use of the QCD sum rules and the dispersion relation. Going off shell the
mixing decreases, changes sign at and is
negative in the space like region. Implications of this result to the isospin
breaking part of the nuclear force are discussed.Comment: 26 pages + 11 figures (PostScript
- …