1,108 research outputs found

    Local three-nucleon interaction from chiral effective field theory

    Get PDF
    The three-nucleon (NNN) interaction derived within the chiral effective field theory at the next-to-next-to-leading order (N2LO) is regulated with a function depending on the magnitude of the momentum transfer. The regulated NNN interaction is then local in the coordinate space, which is advantages for some many-body techniques. Matrix elements of the local chiral NNN interaction are evaluated in a three-nucleon basis. Using the ab initio no-core shell model (NCSM) the NNN matrix elements are employed in 3H and 4He bound-state calculations.Comment: 17 pages, 9 figure

    Off-shell Behavior of the π ⁣ ⁣η\pi\!-\!\eta Mixing Amplitude

    Full text link
    We extend a recent calculation of the momentum dependence of the ρω\rho-\omega mixing amplitude to the pseudoscalar sector. The π ⁣ ⁣η\pi\!-\!\eta mixing amplitude is calculated in a hadronic model where the mixing is driven by the neutron-proton mass difference. Closed-form analytic expressions are presented in terms of a few nucleon-meson parameters. The observed momentum dependence of the mixing amplitude is strong enough as to question earlier calculations of charge-symmetry-breaking observables based on the on-shell assumption. The momentum dependence of the π ⁣ ⁣η\pi\!-\!\eta amplitude is, however, practically identical to the one recently predicted for ρω\rho-\omega mixing. Hence, in this model, the ratio of pseudoscalar to vector mixing amplitudes is, to a good approximation, a constant solely determined from nucleon-meson coupling constants. Furthermore, by selecting these parameters in accordance with charge-symmetry-conserving data and SU(3)-flavor symmetry, we reproduce the momentum dependence of the π ⁣ ⁣η\pi\!-\!\eta mixing amplitude predicted from chiral perturbation theory. Alternatively, one can use chiral-perturbation-theory results to set stringent limits on the value of the NNηNN\eta coupling constant.Comment: 13 pages, Latex with Revtex, 3 postscript figures (not included) available on request, SCRI-03089

    Charge-Symmetry Breaking and the Two-Pion-Exchange Two-Nucleon Interaction

    Full text link
    Charge-symmetry breaking in the nucleon-nucleon force is investigated within an effective field theory, using a classification of isospin-violating interactions based on power-counting arguments. The relevant charge-symmetry-breaking interactions corresponding to the first two orders in the power counting are discussed, including their effects on the 3He-3H binding-energy difference. The static charge-symmetry-breaking potential linear in the nucleon-mass difference is constructed using chiral perturbation theory. Explicit formulae in momentum and configuration spaces are presented. The present work completes previously obtained results.Comment: 15 pages, 2 figure

    Does The 3N-Force Have A Hard Core?

    Full text link
    The meson-nucleon dynamics that generates the hard core of the RuhrPot two-nucleon interaction is shown to vanish in the irreducible 3N force. This result indicates a small 3N force dominated by conventional light meson-exchange dynamics and holds for an arbitrary meson-theoretic Lagrangian. The resulting RuhrPot 3N force is defined in the appendix. A completely different result is expected when the Tamm-Dancoff/Bloch-Horowitz procedure is used to define the NN and 3N potentials. In that approach, (e.g. full Bonn potential) both the NN {\it and} 3N potentials contain non-vanishing contributions from the coherent sum of meson-recoil dynamics and the possibility of a large hard core requiring explicit calculation cannot be ruled out.Comment: 16 pages REVTeX + 3 ps fig

    Temperature and Density Effects on the Nucleon Mass Splitting

    Get PDF
    The finite temperature and finite density dependence of the neutron-proton mass difference is analysed in a purely hadronic framework where the ρω\rho-\omega mixing is crucial for this isospin symmetry breakdown. The problem is handled within Thermo Field Dynamics. The present results, consistent with partial chiral and charge symmetry restoration, improve the experimental data fit for the energy difference between mirror nuclei.Comment: 17 pages, revtex fil

    A Repeated Measures Experiment of Green Exercise to Improve Self-Esteem in UK School Children

    Get PDF
    Exercising in natural, green environments creates greater improvements in adult's self-esteem than exercise undertaken in urban or indoor settings. No comparable data are available for children. The aim of this study was to determine whether so called 'green exercise' affected changes in self-esteem; enjoyment and perceived exertion in children differently to urban exercise. We assessed cardiorespiratory fitness (20 m shuttle-run) and self-reported physical activity (PAQ-A) in 11 and 12 year olds (n = 75). Each pupil completed two 1.5 mile timed runs, one in an urban and another in a rural environment. Trials were completed one week apart during scheduled physical education lessons allocated using a repeated measures design. Self-esteem was measured before and after each trial, ratings of perceived exertion (RPE) and enjoyment were assessed after completing each trial. We found a significant main effect (F (1,74), = 12.2, p<0.001), for the increase in self-esteem following exercise but there was no condition by exercise interaction (F (1,74), = 0.13, p = 0.72). There were no significant differences in perceived exertion or enjoyment between conditions. There was a negative correlation (r = -0.26, p = 0.04) between habitual physical activity and RPE during the control condition, which was not evident in the green exercise condition (r = -0.07, p = 0.55). Contrary to previous studies in adults, green exercise did not produce significantly greater increases in self-esteem than the urban exercise condition. Green exercise was enjoyed more equally by children with differing levels of habitual physical activity and has the potential to engage less active children in exercise. © 2013 Reed et al

    Charge-Asymmetry of the Nucleon-Nucleon Interaction

    Get PDF
    Based upon the Bonn meson-exchange model for the nucleon-nucleon (NNNN) interaction, we study systematically the charge-symmetry-breaking (CSB) of the NNNN interaction due to nucleon mass splitting. Particular attention is payed to CSB generated by the 2π2\pi-exchange contribution to the NNNN interaction, πρ\pi\rho diagrams, and other multi-meson-exchanges. We calculate the CSB differences in the 1S0^1S_0 effective range parameters as well as phase shift differences in SS, PP and higher partial waves up to 300 MeV lab. energy. We find a total CSB difference in the singlet scattering length of 1.6 fm which explains the empirical value accurately. The corresponding CSB phase-shift differences are appreciable at low energy in the 1S0^1S_0 state. In the other partial waves, the CSB splitting of the phase shifts is small and increases with energy, with typical values in the order of 0.1 deg at 300 MeV in PP and DD waves.Comment: 11 pages, RevTex, 14 figure

    Three-Nucleon Force Effects in Nucleon Induced Deuteron Breakup: Predictions of Current Models (I)

    Get PDF
    An extensive study of three-nucleon force effects in the entire phase space of the nucleon-deuteron breakup process, for energies from above the deuteron breakup threshold up to 200 MeV, has been performed. 3N Faddeev equations have been solved rigorously using the modern high precision nucleon-nucleon potentials AV18, CD Bonn, Nijm I, II and Nijm 93, and also adding 3N forces. We compare predictions for cross sections and various polarization observables when NN forces are used alone or when the two pion-exchange Tucson-Melbourne 3NF was combined with each of them. In addition AV18 was combined with the Urbana IX 3NF and CD Bonn with the TM' 3NF, which is a modified version of the TM 3NF, more consistent with chiral symmetry. Large but generally model dependent 3NF effects have been found in certain breakup configurations, especially at the higher energies, both for cross sections and spin observables. These results demonstrate the usefulness of the kinematically complete breakup reaction in testing the proper structure of 3N forces.Comment: 42 pages, 20 ps figures, 2 gif figure

    The Off Shell ρ\rho-ω\omega Mixing in the QCD Sum Rules

    Full text link
    The q2q^2 dependence of the ρω\rho-\omega mixing amplitude is analyzed with the use of the QCD sum rules and the dispersion relation. Going off shell the mixing decreases, changes sign at q20.4mρ2>0q^2 \simeq 0.4 m_{\rho}^2 > 0 and is negative in the space like region. Implications of this result to the isospin breaking part of the nuclear force are discussed.Comment: 26 pages + 11 figures (PostScript

    Sigma-fields x Chiral Scalars in Nuclear Three Body Potentials

    Full text link
    The scalar-isoscalar field of an effective chiral Lagrangian transforms differently in either linear or non-linear frameworks: in the former case it is the counterpart of the pion whereas in the latter it is chiral invariant on its own. We compare the predictions from these two models for nucleon interactions and find results which are identical for two-body and rather different for three-body potentials. Some qualitative features of three-body interactions are discussed.Comment: Latex, 22 pages, 7 figures appended with epsf.sty, to be appear in Phys. Rev
    corecore