59 research outputs found

    Radion and Holographic Brane Gravity

    Get PDF
    The low energy effective theory for the Randall-Sundrum two brane system is investigated with an emphasis on the role of the non-linear radion in the brane world. The equations of motion in the bulk is solved using a low energy expansion method. This allows us, through the junction conditions, to deduce the effective equations of motion for the gravity on the brane. It is shown that the gravity on the brane world is described by a quasi-scalar-tensor theory with a specific coupling function omega(Psi) = 3 Psi / 2(1-Psi) on the positive tension brane and omega(Phi) = -3 Phi / 2(1+Phi) on the negative tension brane, where Psi and Phi are non-linear realizations of the radion on the positive and negative tension branes, respectively. In contrast to the usual scalar-tensor gravity, the quasi-scalar-tensor gravity couples with two kinds of matter, namely, the matters on both positive and negative tension branes, with different effective gravitational coupling constants. In particular, the radion disguised as the scalar fields Psi and Phi couples with the sum of the traces of the energy momentum tensor on both branes. In the course of the derivation, it has been revealed that the radion plays an essential role to convert the non-local Einstein gravity with the generalized dark radiation to the local quasi-scalar-tensor gravity. For completeness, we also derive the effective action for our theory by substituting the bulk solution into the original action. It is also shown that the quasi-scalar-tensor gravity works as holograms at the low energy in the sense that the bulk geometry can be reconstructed from the solution of the quasi-scalar-tensor gravity.Comment: Revtex4, 18 pages, revised version, conclusions unchanged, references adde

    Олесь Бабій - співець слави січових стрільців

    Get PDF
    The Salamanca Formation of the San Jorge Basin (Patagonia, Argentina) preserves critical records of Southern Hemisphere Paleocene biotas, but its age remains poorly resolved, with estimates ranging from Late Cretaceous to middle Paleocene. We report a multi-disciplinary geochronologic study of the Salamanca Formation and overlying Río Chico Group in the western part of the basin. New constraints include (1) an 40Ar/39Ar age determination of 67.31 ± 0.55 Ma from a basalt flow underlying the Salamanca Formation, (2) micropaleontological results indicating an early Danian age for the base of the Salamanca Formation, (3) laser ablation HR-MC-ICP-MS (high resolution-multi collector-inductively coupled plasma-mass spectrometry) U-Pb ages and a high-resolution TIMS (thermal ionization mass spectrometry) age of 61.984 ± 0.041(0.074)[0.100] Ma for zircons from volcanic ash beds in the Peñas Coloradas Formation (Río Chico Group), and (4) paleomagnetic results indicating that the Salamanca Formation in this area is entirely of normal polarity, with reversals occurring in the Río Chico Group. Placing these new age constraints in the context of a sequence stratigraphic model for the basin, we correlate the Salamanca Formation in the study area to Chrons C29n and C28n, with the Banco Negro Inferior (BNI), a mature widespread fossiliferous paleosol unit at the top of the Salamanca Formation, corresponding to the top of Chron C28n. The diverse paleobotanical assemblages from this area are here assigned to C28n (64.67–63.49 Ma), ∼2–3 million years older than previously thought, adding to growing evidence for rapid Southern Hemisphere floral recovery after the Cretaceous-Paleogene extinction. Important Peligran and “Carodnia” zone vertebrate fossil assemblages from coastal BNI and Peñas Coloradas exposures are likely older than previously thought and correlate to the early Torrejonian and early Tiffanian North American Land Mammal Ages, respectively

    Hypersurface-Invariant Approach to Cosmological Perturbations

    Get PDF
    Using Hamilton-Jacobi theory, we develop a formalism for solving semi-classical cosmological perturbations which does not require an explicit choice of time-hypersurface. The Hamilton-Jacobi equation for gravity interacting with matter (either a scalar or dust field) is solved by making an Ansatz which includes all terms quadratic in the spatial curvature. Gravitational radiation and scalar perturbations are treated on an equal footing. Our technique encompasses linear perturbation theory and it also describes some mild nonlinear effects. As a concrete example of the method, we compute the galaxy-galaxy correlation function as well as large-angle microwave background fluctuations for power-law inflation, and we compare with recent observations.Comment: 51 pages, Latex 2.09 ALBERTA THY/20-94, DAMTP R94/25 To appear in Phys. Rev.

    Editorial Statement About JCCAP’s 2023 Special Issue on Informant Discrepancies in Youth Mental Health Assessments: Observations, Guidelines, and Future Directions Grounded in 60 Years of Research

    Get PDF
    Issue 1 of the 2011 Volume of the Journal of Clinical Child and Adolescent Psychology (JCCAP) included a Special Section about the use of multi-informant approaches to measure child and adolescent (i.e., hereafter referred to collectively as “youth”) mental health (De Los Reyes, 2011). Researchers collect reports from multiple informants or sources (e.g., parent and peer, youth and teacher) to estimate a given youth’s mental health. The 2011 JCCAP Special Section focused on the most common outcome of these approaches, namely the significant discrepancies that arise when comparing estimates from any two informant’s reports (i.e., informant discrepancies). These discrepancies appear in assessments conducted across the lifespan (Achenbach, 2020). That said, JCCAP dedicated space to understanding informant discrepancies, because they have been a focus of scholarship in youth mental health for over 60 years (e.g., Achenbach et al., 1987; De Los Reyes & Kazdin, 2005; Glennon & Weisz, 1978; Kazdin et al., 1983; Kraemer et al., 2003; Lapouse & Monk, 1958; Quay et al., 1966; Richters, 1992; Rutter et al., 1970; van der Ende et al., 2012). Thus, we have a thorough understanding of the areas of research for which they reliably appear when clinically assessing youth. For instance, intervention researchers observe informant discrepancies in estimates of intervention effects within randomized controlled trials (e.g., Casey & Berman, 1985; Weisz et al., 2017). Service providers observe informant discrepancies when working with individual clients, most notably when making decisions about treatment planning (e.g., Hawley & Weisz, 2003; Hoffman & Chu, 2015). Scholars in developmental psychopathology observe these discrepancies when seeking to understand risk and protective factors linked to youth mental health concerns (e.g., Hawker & Boulton, 2000; Hou et al., 2020; Ivanova et al., 2022). Thus, the 2011 JCCAP Special Section posed a question: Might these informant discrepancies contain data relevant to understanding youth mental health? Suppose none of the work in youth mental health is immune from these discrepancies. In that case, the answer to this question strikes at the core of what we produce―from the interventions we develop and implement, to the developmental psychopathology research that informs intervention development

    Habilidades e avaliação de executivos

    Full text link

    Optimisation of bandwith in noniterative wideband amplifiers

    Full text link
    corecore