1,505 research outputs found

    A cloudy Vlasov solution

    Full text link
    We propose to integrate the Vlasov-Poisson equations giving the evolution of a dynamical system in phase-space using a continuous set of local basis functions. In practice, the method decomposes the density in phase-space into small smooth units having compact support. We call these small units ``clouds'' and choose them to be Gaussians of elliptical support. Fortunately, the evolution of these clouds in the local potential has an analytical solution, that can be used to evolve the whole system during a significant fraction of dynamical time. In the process, the clouds, initially round, change shape and get elongated. At some point, the system needs to be remapped on round clouds once again. This remapping can be performed optimally using a small number of Lucy iterations. The remapped solution can be evolved again with the cloud method, and the process can be iterated a large number of times without showing significant diffusion. Our numerical experiments show that it is possible to follow the 2 dimensional phase space distribution during a large number of dynamical times with excellent accuracy. The main limitation to this accuracy is the finite size of the clouds, which results in coarse graining the structures smaller than the clouds and induces small aliasing effects at these scales. However, it is shown in this paper that this method is consistent with an adaptive refinement algorithm which allows one to track the evolution of the finer structure in phase space. It is also shown that the generalization of the cloud method to the 4 dimensional and the 6 dimensional phase space is quite natural.Comment: 46 pages, 25 figures, submitted to MNRA

    A "metric" semi-Lagrangian Vlasov-Poisson solver

    Full text link
    We propose a new semi-Lagrangian Vlasov-Poisson solver. It employs elements of metric to follow locally the flow and its deformation, allowing one to find quickly and accurately the initial phase-space position Q(P)Q(P) of any test particle PP, by expanding at second order the geometry of the motion in the vicinity of the closest element. It is thus possible to reconstruct accurately the phase-space distribution function at any time tt and position PP by proper interpolation of initial conditions, following Liouville theorem. When distorsion of the elements of metric becomes too large, it is necessary to create new initial conditions along with isotropic elements and repeat the procedure again until next resampling. To speed up the process, interpolation of the phase-space distribution is performed at second order during the transport phase, while third order splines are used at the moments of remapping. We also show how to compute accurately the region of influence of each element of metric with the proper percolation scheme. The algorithm is tested here in the framework of one-dimensional gravitational dynamics but is implemented in such a way that it can be extended easily to four or six-dimensional phase-space. It can also be trivially generalised to plasmas.Comment: 32 pages, 14 figures, accepted for publication in Journal of Plasma Physics, Special issue: The Vlasov equation, from space to laboratory plasma

    Observational Constraints on Higher Order Clustering up to $z\simeq 1

    Get PDF
    Constraints on the validity of the hierarchical gravitational instability theory and the evolution of biasing are presented based upon measurements of higher order clustering statistics in the Deeprange Survey, a catalog of 710,000\sim710,000 galaxies with IAB24I_{AB} \le 24 derived from a KPNO 4m CCD imaging survey of a contiguous 4×44^{\circ} \times 4^{\circ} region. We compute the 3-point and 4-point angular correlation functions using a direct estimation for the former and the counts-in-cells technique for both. The skewness s3s_3 decreases by a factor of 34\simeq 3-4 as galaxy magnitude increases over the range 17I22.517 \le I \le 22.5 (0.1z0.80.1 \lesssim z \lesssim 0.8). This decrease is consistent with a small {\it increase} of the bias with increasing redshift, but not by more than a factor of 2 for the highest redshifts probed. Our results are strongly inconsistent, at about the 3.54σ3.5-4 \sigma level, with typical cosmic string models in which the initial perturbations follow a non-Gaussian distribution - such models generally predict an opposite trend in the degree of bias as a function of redshift. We also find that the scaling relation between the 3-point and 4-point correlation functions remains approximately invariant over the above magnitude range. The simplest model that is consistent with these constraints is a universe in which an initially Gaussian perturbation spectrum evolves under the influence of gravity combined with a low level of bias between the matter and the galaxies that decreases slightly from z0.8z \sim 0.8 to the current epoch.Comment: 28 pages, 4 figures included, ApJ, accepted, minor change

    Density functional theory study of Fe(II) adsorption and oxidation on goethite surfaces

    Full text link
    We study the interactions between Fe(II) aqua complexes and surfaces of goethite (alpha-FeOOH) by means of density functional theory calculations including the so-called Hubbard U correction to the exchange-correlation functional. Using a thermodynamic approach, we find that (110) and (021) surfaces in contact with aqueous solutions are almost equally stable, despite the evident needlelike shape of goethite crystals indicating substantially different reactivity of the two faces. We thus suggest that crystal anisotropy may result from different growth rates due to virtually barrierless adsorption of hydrated ions on the (021) but not on the (110) surface. No clear evidence is found for spontaneous electron transfer from an adsorbed Fe(II) hex-aqua complex to a defect-free goethite substrate. Crystal defects are thus inferred to play an important role in assisting such electron transfer processes observed in a recent experimental study. Finally, goethite surfaces are observed to enhance the partial oxidation of adsorbed aqueous Fe(II) upon reaction with molecular oxygen. We propose that this catalytic oxidation effect arises from donation of electronic charge from the bulk oxide to the oxidizing agent through shared hydroxyl ligands anchoring the Fe(II) complexes on the surface

    The three dimensional skeleton: tracing the filamentary structure of the universe

    Full text link
    The skeleton formalism aims at extracting and quantifying the filamentary structure of the universe is generalized to 3D density fields; a numerical method for computating a local approximation of the skeleton is presented and validated here on Gaussian random fields. This method manages to trace well the filamentary structure in 3D fields such as given by numerical simulations of the dark matter distribution on large scales and is insensitive to monotonic biasing. Two of its characteristics, namely its length and differential length, are analyzed for Gaussian random fields. Its differential length per unit normalized density contrast scales like the PDF of the underlying density contrast times the total length times a quadratic Edgeworth correction involving the square of the spectral parameter. The total length scales like the inverse square smoothing length, with a scaling factor given by 0.21 (5.28+ n) where n is the power index of the underlying field. This dependency implies that the total length can be used to constrain the shape of the underlying power spectrum, hence the cosmology. Possible applications of the skeleton to galaxy formation and cosmology are discussed. As an illustration, the orientation of the spin of dark halos and the orientation of the flow near the skeleton is computed for dark matter simulations. The flow is laminar along the filaments, while spins of dark halos within 500 kpc of the skeleton are preferentially orthogonal to the direction of the flow at a level of 25%.Comment: 17 pages, 11 figures, submitted to MNRA

    Ethical Implications in AI-Powered Trend Research Platforms

    Get PDF
    The manuscript discusses the limitations of applying AI in trend research platforms for the fashion system. This analysis intends to take a position within the emergent research topic of AI. Considering its ethical implications, we explore the opportunities of implementing AI to support trend research from a design-oriented perspective, realising the relationship between fashion and trends, which is central in shaping the future. Examples of AI-powered trend platforms evidence how valuable their insights are for strategic innovation. The analysis focuses on platforms that provide tailored services using AI and expert interpretation. Virtue ethics of technology serves as a useful framework to examine this topic, proposing a new set of virtues that respond to technology’s shaping of behaviour and its disadvantages. The risks of applying AI are many-fold; the consequences perpetuate power imbalances and social inequality. Proposing guidelines for enabling a responsible practice explores how to forge ethics into AI, creating a pluralised practice

    Development of a Classical Force Field for the Oxidised Si Surface: Application to Hydrophilic Wafer Bonding

    Full text link
    We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidised Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO2 polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress and interactions with single water molecules of a natively oxidised Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidised and amorphous silica surfaces of 97 mJ/m2 and 90mJ/m2, respectively, at a water adsorption coverage of approximately 1 monolayer. The difference arises from the stronger interaction of the natively oxidised surface with liquid water, resulting in a higher heat of immersion (203 mJ/m2 vs. 166 mJ/m2), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller density with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account
    corecore