2,297 research outputs found
Influência de sistemas de integração lavoura-pecuária-floresta sobre a biomassa microbiana do solo.
JIPE 2013
PCN39 TREATMENT PATTERNS AMONG PATIENTS WITH ADVANCED MELANOMA:A RETROSPECTIVE LONGITUDINAL STUDY
Pericas, Enri
Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2
The Ras oncogene products regulate the expression of genes in transformed cells, and members of the Ets family of transcription factors have been implicated in this process. To determine which Ets factors are the targets of Ras signaling pathways, the abilities of several Ets factors to activate Ras-responsive enhancer (RRE) reporters in the presence of oncogenic Ras were examined. In transient transfection assay, reporters containing RREs composed of Ets-AP-1 binding sites could be activated 30-fold in NIH 3T3 fibroblasts and 80-fold in the macrophage-like line RAW264 by the combination of Ets1 or Ets2 and Ras but not by several other Ets factors that were tested in the assay. Ets2 and Ras also superactivated an RRE composed of Ets-Ets binding sites, but the Ets-responsive promoter of the c-fms gene was not superactivated. Mutation of a threonine residue to alanine in the conserved amino-terminal regions of Ets1 and Ets2 (threonine 38 and threonine 72, respectively) abrogated the ability of each of these proteins to superactivate reporter gene expression. Phosphoamino acid analysis of radiolabeled Ets2 revealed that Ras induced normally absent threonine-specific phosphorylation of the protein. The Ras-dependent increase in threonine phosphorylation was not observed in Ets2 proteins that had the conserved threonine 72 residue mutated to alanine or serine. These data indicate that Ets1 and Ets2 are specific nuclear targets of Ras signaling events and that phosphorylation of a conserved threonine residue is a necessary molecular component of Ras-mediated activation of these transcription factors
Spin dynamics and disorder effects in the S=1/2 kagome Heisenberg spin liquid phase of kapellasite
We report Cl NMR, ESR, SR and specific heat measurements on the
frustrated kagom\'e magnet kapellasite,
CuZn(OH)Cl, where a gapless spin liquid phase is
stabilized by a set of competing exchange interactions. Our measurements
confirm the ferromagnetic character of the nearest-neighbour exchange
interaction and give an energy scale for the competing interactions K. The study of the temperature-dependent ESR lineshift reveals a
moderate symmetric exchange anisotropy term , with %. These
findings validate a posteriori the use of the Heisenberg
model to describe the magnetic properties of kapellasite [Bernu et al., Phys.
Rev. B 87, 155107 (2013)]. We further confirm that the main deviation from this
model is the severe random depletion of the magnetic kagom\'e lattice by 27%,
due to Cu/Zn site mixing, and specifically address the effect of this disorder
by Cl NMR, performed on an oriented polycrystalline sample.
Surprisingly, while being very sensitive to local structural deformations, our
NMR measurements demonstrate that the system remains homogeneous with a unique
spin susceptibility at high temperature, despite a variety of magnetic
environments. Unconventional spin dynamics is further revealed by NMR and
SR in the low-, correlated, spin liquid regime, where a broad
distribution of spin-lattice relaxation times is observed. We ascribe this to
the presence of local low-energy modes.Comment: 15 pages, 11 figures. To appear in Phys. Rev.
- …