27 research outputs found

    Natural and Synthetic Polymers as Inhibitors of Drug Efflux Pumps

    Get PDF
    Inhibition of efflux pumps is an emerging approach in cancer therapy and drug delivery. Since it has been discovered that polymeric pharmaceutical excipients such as Tweens® or Pluronics® can inhibit efflux pumps, various other polymers have been investigated regarding their potential efflux pump inhibitory activity. Among them are polysaccharides, polyethylene glycols and derivatives, amphiphilic block copolymers, dendrimers and thiolated polymers. In the current review article, natural and synthetic polymers that are capable of inhibiting efflux pumps as well as their application in cancer therapy and drug delivery are discussed

    Effects of polyethylene glycols on intestinal efflux pump expression and activity in Caco-2 cells

    Get PDF
    The present study was planned to investigate the influence of polyethylene glycols (PEGs) on the activity and expression of P-glycoprotein (P-gp). Sub-toxic concentrations of PEGs in Caco-2 cells were determined using the MTT test assay. Then the measurement of Rhodamine-123 (Rho-123) uptake, a P-gp fluorescence substrate, in Caco-2 cells confronting PEG 400 (1% and 2% w/v), PEG 4000 (2% and 4% w/v), PEG 6000 (2% and 4% w/v), PEG 10000 (2% and 4% w/v), PEG 15000 (1% and 2% w/v), and PEG 35000 (2% and 4% w/v) overnight was taken to elucidate whether non-toxic concentrations of PEGs are able to impact P-gp activity. Furthermore, western blotting was carried out to investigate P-gp protein expression. The results showed that PEG 400 at concentrations of 1% (w/v) and 2% (w/v) and PEG 6000 at the concentration of 4% (w/v) are notably capable of blocking P-gp. Based on the obtained results it is concluded that the mentioned excipients could be used to obstruct P-gp efflux transporter in order to increase the bioavailability of co-administered substrate drug

    Primitive elements for commutative ring extensions

    Get PDF
    The existence of primitive elements for integral domain extensions is considered with reference to the well known theorem about primitive elements for field extensions. Primitive elements for extensions of a commutative ring R with identity are considered, where R has only a finite number of minimal prime ideals with zero intersection. This case is reduced to the case for ring extensions of integral domains

    Key Structure of Brij for Overcoming Multidrug Resistance in Cancer

    No full text
    Multidrug resistance (MDR) is a major barrier to the chemotherapy treatment of many cancers. However, some non-ionic surfactants, for example Brij, have been shown to restore the sensitivity of MDR cells to such drugs. The aim of this study was to explore the reversal effect of Brij on MDR tumor cells and elucidate its potential mechanism. Our data indicate that the structure of Brij surfactants plays an important role in overcoming MDR in cancer, i.e. modified hydrophilic-lipophilic balance (MHLB, the ratio of the number (n) of hydrophilic repeating units of ethylene oxide (EO) to the number (m) of carbons in the hydrophobic tail (CH(2)).). Cell viability of cells treated with paclitaxel (PTX) nanocrystals (NCs) formulated with Brij showed positive correlations with MHLB (R(2) = 0.8195); the higher the ratio of Brij to PTX in NCs, the higher cytotoxicity induced by the PTX NCs. Significant increases in intracellular accumulation of (3)H-PTX (P-gp substrate) were observed in an MDR cell line (H460/taxR cells) treated with Brij 78 (MHLB=1.11) and Brij 97 (MHLB=0.6). After treatments with Brij 78 and Brij 97, the levels of intracellular ATP were decreased and verapamil induced ATPase activities of P-gp were inhibited in multidrug resistant cells. The responses of the cells to Brij 78 and Brij 97 in ATP depletion studies correlated with the cell viability induced by PTX/Brij NCs and intracellular accumulation of (3)H-PTX. Brij 78 and Brij 97 could not alter the levels of P-gp expression detected by western blotting. These findings may provide some insight into the likelihood of further development of more potent P-gp inhibitors for the treatment of MDR in cancer
    corecore