52,446 research outputs found
k_T factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions
We show that hard-scattering factorization is violated in the production of
high-p_T hadrons in hadron-hadron collisions, in the case that the hadrons are
back-to-back, so that k_T factorization is to be used. The explicit
counterexample that we construct is for the single-spin asymmetry with one beam
transversely polarized. The Sivers function needed here has particular
sensitivity to the Wilson lines in the parton densities. We use a greatly
simplified model theory to make the breakdown of factorization easy to check
explicitly. But the counterexample implies that standard arguments for
factorization fail not just for the single-spin asymmetry but for the
unpolarized cross section for back-to-back hadron production in QCD in
hadron-hadron collisions. This is unlike corresponding cases in e^+e^-
annihilation, Drell-Yan, and deeply inelastic scattering. Moreover, the result
endangers factorization for more general hadroproduction processes.Comment: 10 pages. V. 2: Title change, misprints and minor corrections, as in
journal versio
Relative distributions of W's and Z's at low transverse momenta
Despite large uncertainties in the and transverse momentum
() distributions for q_T\lsim 10 GeV, the ratio of the distributions
varys little. The uncertainty in the ratio of to distributions is
on the order of a few percent, independent of the details of the
nonperturbative parameterization.Comment: 13 pages in revtex, 5 postscript figures available upon request,
UIOWA-94-0
General Mass Scheme for Jet Production in DIS
We propose a method for calculating DIS jet production cross sections in QCD
at NLO accuracy with consistent treatment of heavy quarks. The scheme relies on
the dipole subtraction method for jets, which we extend to all possible initial
state splittings with heavy partons, so that the Aivazis-Collins-Olness-Tung
massive collinear factorization scheme (ACOT) can be applied. As a first check
of the formalism we recover the ACOT result for the heavy quark structure
function using a dedicated Monte Carlo program.Comment: 6 pages, 2 figure
Naive time-reversal odd phenomena in semi-inclusive deep-inelastic scattering from light-cone constituent quark models
We present results for leading-twist azimuthal asymmetries in semi-inclusive
lepton-nucleon deep-inelastic scattering due to naively time-reversal odd
transverse-momentum dependent parton distribution functions from the light-cone
constituent quark model. We carefully discuss the range of applicability of the
model, especially with regard to positivity constraints and evolution effects.
We find good agreement with available experimental data from COMPASS and
HERMES, and present predictions to be tested in forthcoming experiments at
Jefferson Lab.Comment: 10 pages, 7 figures, discussion of evolution effects extended, to
appear in Phys.Rev.
Transverse-Momentum Dependent Factorization for gamma^* pi^0 to gamma
With a consistent definition of transverse-momentum dependent (TMD)
light-cone wave function, we show that the amplitude for the process can be factorized when the virtuality of the initial photon is
large. In contrast to the collinear factorization in which the amplitude is
factorized as a convolution of the standard light-cone wave function and a hard
part, the TMD factorization yields a convolution of a TMD light-cone wave
function, a soft factor and a hard part. We explicitly show that the TMD
factorization holds at one loop level. It is expected that the factorization
holds beyond one-loop level because the cancelation of soft divergences is on a
diagram-by-diagram basis. We also show that the TMD factorization helps to
resum large logarithms of type .Comment: Published version in Phys.Rev.D75:014014,200
Derivation of the Gauge Link in Light Cone Gauge
In light cone gauge, a gauge link at light cone infinity is necessary for
transverse momentum-dependent parton distribution to restore the gauge
invariance in some specific boundary conditions. We derive such transverse
gauge link in a more regular and general method. We find the gauge link at
light cone infinity naturally arises from the contribution of the pinched
poles: one is from the quark propagator and the other is hidden in the gauge
vector field in light cone gauge. Actually, in the amplitude level, we have
obtained a more general gauge link over the hypersurface at light cone infinity
which is beyond the transverse direction. The difference of such gauge link
between semi-inclusive deep inelastic scattering and Drell-Yan processes can
also be obtained directly and clearly in our derivation.Comment: 18 pages, 5 figures, published versio
The space-time structure of hard scattering processes
Recent studies of exclusive electroproduction of vector mesons at JLab make
it possible for the first time to play with two independent hard scales: the
virtuality Q^2 of the photon, which sets the observation scale, and the
momentum transfer t to the hadronic system, which sets the interaction scale.
They reinforce the description of hard scattering processes in terms of few
effective degrees of freedom relevant to the Jlab-Hermes energy range.Comment: 4 pages; 5 figure
Does the bracket-ligature combination affect the amount of orthodontic space closure over three months? A randomized controlled trial
OBJECTIVE: To investigate the effect of bracket-ligature combination on the amount of orthodontic space closure over three months. DESIGN: Randomized clinical trial with three parallel groups. SETTING: A hospital orthodontic department (Chesterfield Royal Hospital, UK). PARTICIPANTS: Forty-five patients requiring upper first premolar extractions. METHODS: Informed consent was obtained and participants were randomly allocated into one of three groups: (1) conventional pre-adjusted edgewise brackets and elastomeric ligatures; (2) conventional pre-adjusted edgewise brackets and Super Slick((R)) low friction elastomeric ligatures; (3) Damon 3MX((R)) passive self-ligating brackets. Space closure was undertaken on 0.019x0.025-inch stainless steel archwires with nickel-titanium coil springs. Participants were recalled at four weekly intervals. Upper alginate impressions were taken at each visit (maximum three). The primary outcome measure was the mean amount of space closure in a 3-month period. RESULTS: A one-way ANOVA was undertaken [dependent variable: mean space closure (mm); independent variable: group allocation]. The amount of space closure was very similar between the three groups (1 mm per 28 days); however, there was a wide variation in the rate of space closure between individuals. The differences in the amount of space closure over three months between the three groups was very small and non-significant (P = 0.718). CONCLUSION: The hypothesis that reducing friction by modifying the bracket/ligature interface increases the rate of space closure was not supported. The major determinant of orthodontic tooth movement is probably the individual patient response
Perturbation Theory of Coulomb Gauge Yang-Mills Theory Within the First Order Formalism
Perturbative Coulomb gauge Yang-Mills theory within the first order formalism
is considered. Using a differential equation technique and dimensional
regularization, analytic results for both the ultraviolet divergent and finite
parts of the two-point functions at one-loop order are derived. It is shown how
the non-ultraviolet divergent parts of the results are finite at spacelike
momenta with kinematical singularities on the light-cone and subsequent branch
cuts extending into the timelike region.Comment: 23 pages, 6 figure
- …