882 research outputs found

    Restoration of kTk_T factorization for low pTp_T hadron hadroproduction

    Full text link
    We discuss the applicability of the kTk_T factorization theorem to low-pTp_T hadron production in hadron-hadron collision in a simple toy model, which involves only scalar particles and gluons. It has been shown that the kTk_T factorization for high-pTp_T hadron hadroproduction is broken by soft gluons in the Glauber region, which are exchanged among a transverse-momentum-dependent (TMD) parton density and other subprocesses of the collision. We explain that the contour of a loop momentum can be deformed away from the Glauber region at low pTp_T, so the above residual infrared divergence is factorized by means of the standard eikonal approximation. The kTk_T factorization is then restored in the sense that a TMD parton density maintains its universality. Because the resultant Glauber factor is independent of hadron flavors, experimental constraints on its behavior are possible. The kTk_T factorization can also be restored for the transverse single-spin asymmetry in hadron-hadron collision at low pTp_T in a similar way, with the residual infrared divergence being factorized into the same Glauber factor.Comment: 12 pages, 2 figures, version to appear in EPJ

    Dijet Production at Large Rapidity Intervals

    Full text link
    We examine dijet production at large rapidity intervals at Tevatron energies, by using the theory of Lipatov and collaborators which resums the leading powers of the rapidity interval. We analyze the growth of the Mueller-Navelet KK-factor in this context and find it to be negligible. However, we do find a considerable enhancement of jet production at large transverse momenta. In addition, we show that the correlation in transverse momentum and azimuthal angle of the tagging jets fades away as the rapidity interval is increased.Comment: 12 pages, preprint DESY 93-139, SCIPP 93/3

    QCD factorization for forward hadron scattering at high energies

    Full text link
    We consider the QCD factorization of DIS structure functions at small x and amplitudes of 2->2 -hadronic forward scattering at high energy. We show that both collinear and k_T-factorization for these processes can be obtained approximately as reductions of a more general (totally unintegrated) form of the factorization. The requirement of ultraviolet and infrared stability of the factorization convolutions allows us to obtain restrictions on the fits for the parton distributions in k_T- and collinear factorization.Comment: 18 pages, 10 figures In the present version misprints found in the prevcious version are corrected and some more details are explaine

    Measuring Parton Densities in the Pomeron

    Get PDF
    We present a program to measure the parton densities in the pomeron using diffractive deep inelastic scattering and diffractive photoproduction, and to test the resulting parton densities by applying them to other processes such as the diffractive production of jets in hadron-hadron collisions. Since QCD factorization has been predicted NOT to apply to hard diffractive scattering, this program of fitting and using parton densities might be expected to fail. Its success or failure will provide useful information on the space-time structure of the pomeron.Comment: Contains revisions based on Phys. Rev. D referee comments. RevTeX version 3, epsf, 31 pages. Uuencoded compressed postscript figures appended. Uncompressed postscript files available at ftp://ftp.phys.psu.edu/pub/preprint/psuth136

    QCD analysis of the diffractive structure function F_2^{D(3)}

    Get PDF
    The proton diffractive structure function F2D(3)F_2^{D(3)} measured in the H1 and ZEUS experiments at HERA is analyzed in terms of both Regge phenomenology and perturbative QCD evolution. A new method determines the values of the Regge intercepts in ``hard'' diffraction, confirming a higher value of the Pomeron intercept than for soft physics. The data are well described by a QCD analysis in which point-like parton distributions, evolving according to the DGLAP equations, are assigned to the leading and sub-leading Regge exchanges. The gluon distributions are found to be quite different for H1 and ZEUS. A {\it global fit} analysis, where a higher twist component is taken from models, allows us to use data in the whole available range in diffractive mass and gives a stable answer for the leading twist contribution. We give sets of quark and gluon parton distributions for the Pomeron, and predictions for the charm and the longitudinal proton diffractive structure function from the QCD fit. An extrapolation to the Tevatron range is compared with CDF data on single diffraction. Conclusions on factorization breaking depend critically whether H1 (strong violation) or ZEUS (compatibility at low β\beta) fits are taken into account.Comment: 24 page

    Generalized parton distributions and Deeply Virtual Compton Scattering in Color Glass Condensate model

    Full text link
    Within the framework of the Color Glass Condensate model, we evaluate quark and gluon Generalized Parton Distributions (GPDs) and the cross section of Deeply Virtual Compton Scattering (DVCS) in the small-xBx_{B} region. We demonstrate that the DVCS cross section becomes independent of energy in the limit of very small xBx_{B}, which clearly indicates saturation of the DVCS cross section. Our predictions for the GPDs and the DVCS cross section at high-energies can be tested at the future Electron-Ion Collider and in ultra-peripheral nucleus-nucleus collisions at the LHC.Comment: 20 pages, 8 Figure

    Factorization and infrared properties of non-perturbative contributions to DIS structure functions

    Full text link
    In this paper we present a new derivation of the QCD factorization. We deduce the k_T- and collinear factorizations for the DIS structure functions by consecutive reductions of a more general theoretical construction. We begin by studying the amplitude of the forward Compton scattering off a hadron target, representing this amplitude as a set of convolutions of two blobs connected by the simplest, two-parton intermediate states. Each blob in the convolutions can contain both the perturbative and non-perturbative contributions. We formulate conditions for separating the perturbative and non-perturbative contributions and attributing them to the different blobs. After that the convolutions correspond to the QCD factorization. Then we reduce this totally unintegrated (basic) factorization first to the k_T- factorization and finally to the collinear factorization. In order to yield a finite expression for the Compton amplitude, the integration over the loop momentum in the basic factorization must be free of both ultraviolet and infrared singularities. This obvious mathematical requirement leads to theoretical restrictions on the non-perturbative contributions (parton distributions) to the Compton amplitude and the DIS structure functions related to the Compton amplitude through the Optical theorem. In particular, our analysis excludes the use of the singular factors x^{-a} (with a > 0) in the fits for the quark and gluon distributions because such factors contradict to the integrability of the basic convolutions for the Compton amplitude. This restriction is valid for all DIS structure functions in the framework of both the k_T- factorization and the collinear factorization if we attribute the perturbative contributions only to the upper blob.Comment: 19 pages, 6 figure

    Study of the Linked Dipole Chain Model in heavy quark production at the Tevatron

    Full text link
    We present calculations of charm and beauty production at Tevatron within the framework of kT-factorization, using the unintegrated gluon distributions as obtained from the Linked Dipole Chain model. The analysis covers transverse momentum and rapidity distributions and the azimuthal correlations between b and bbar quarks (or rather muons from their decay) which are powerful tests for the different unintegrated gluon distributions. We compare the theoretical results with recent experimental data taken by D0 and CDF collaborations at the Tevatron Run I and II.Comment: 16 page

    Double-logarithmic behavior of inelastic fermion form factors in QED and QCD

    Get PDF
    The effective kinematic diagram technique is applied to study inelastic form factors of electron and quark in QED and QCD. The explicit expressions for these form factors in the double-logarithmic approximation are presented. The self-consistency of the results is shown by demonstrating the fulfillment of the Kinoshita-Lee-Nauenberg theorem.Comment: 8 pages, REVTeX. Misprints corrected, references adde

    A matrix formulation for small-x singlet evolution

    Get PDF
    We propose a matrix evolution equation in (x,kt)-space for flavour singlet, unintegrated quark and gluon densities, which generalizes DGLAP and BFKL equations in the relevant limits. The matrix evolution kernel is constructed so as to satisfy renormalization group constraints in both the ordered and antiordered regions of exchanged momenta kt, and incorporates the known NLO anomalous dimensions in the MSbar scheme as well as the NLx BFKL kernel. We provide a hard Pomeron exponent and effective eigenvalue functions that include the n_f-dependence, and give also the matrix of resummed DGLAP splitting functions. The results connect smoothly with those of the single-channel approach. The novel P_{qa} splitting functions show resummation effects delayed down to x=0.0001, while both P_{ga} entries show a shallow dip around x=0.001, similarly to the gluon-gluon single-channel results. We remark that the matrix formulation poses further constraints on the consistency of a BFKL framework with the MSbar scheme, which are satisfied at NLO, but marginally violated by small n_f/N_c^2-suppressed terms at NNLO.Comment: 36 pages, 5 figure
    corecore