27,860 research outputs found

    O\u27er the Far Blue Mountain

    Get PDF
    O\u27er the far blue mountain,O\u27er the white sea foam,Come thou long parted one,Back to thy home.When the bright fire shineth,Sad looks thy place;While the true heart pineth,Missing thy face.O\u27er the far blue mountain,O\u27er the white sea foam,Come thou long parted one,Come to thy home.Ah!Ah!Music is sorrowfulSince thou art gone,Sisters are mourning thee,Come to thine own.Hark! how lone voices callBack to thy rest,Come to thy Fathers hall,Thy Mothers breast.O\u27er the far blue mountain,O\u27er the white sea foam,Come thou long parted one,Come to thy home.Ah!Ah

    Propulsion system mathematical model for a lift/cruise fan V/STOL aircraft

    Get PDF
    A propulsion system mathematical model is documented that allows calculation of internal engine parameters during transient operation. A non-realtime digital computer simulation of the model is presented. It is used to investigate thrust response and modulation requirements as well as the impact of duty cycle on engine life and design criteria. Comparison of simulation results with steady-state cycle deck calculations showed good agreement. The model was developed for a specific 3-fan subsonic V/STOL aircraft application, but it can be adapted for use with any similar lift/cruise V/STOL configuration

    Temperature Anisotropies and Distortions Induced by Hot Intracluster Gas on the Cosmic Microwave Background

    Get PDF
    The power spectrum of temperature anisotropies induced by hot intracluster gas on the cosmic background radiation is calculated. For low multipoles it remains constant while at multipoles above l>2000l>2000 it is exponentially damped. The shape of the radiation power spectrum is almost independent of the average intracluster gas density profile, gas evolution history or clusters virial radii; but the amplitude depends strongly on those parameters and could be as large as 20% that of intrinsic contribution. The exact value depends on the global properties of the cluster population and the evolution of the intracluster gas. The distortion on the Cosmic Microwave Background black body spectra varies in a similar manner. The ratio of the temperature anisotropy to the mean Comptonization parameters is shown to be almost independent of the cluster model and, in first approximation, depends only on the number density of clusters.Comment: 10 pages, Latex, 3 figures; to be published in Ap

    Understudied and Underfunded: Potential Causes of Mass Shootings and Implications for Counseling Research

    Get PDF
    Mass shootings are becoming more commonplace in our society. Despite this increase in frequency, research on mass violence has lagged behind due to halted federal research funding. Counselors and other mental health professionals find themselves at the forefront of this issue due to the contentious debate surrounding the intersection of mental health issues and mass shootings. The purpose of this article is to increase awareness of the cause of this dearth of research, examine what is currently known in the limited scholarly literature, and discuss what still needs to be explored. Implications for positive social change and advocacy efforts are also provided

    Dark Halo and Disk Galaxy Scaling Laws in Hierarchical Universes

    Get PDF
    We use cosmological N-body/gasdynamical simulations that include star formation and feedback to examine the proposal that scaling laws between the total luminosity, rotation speed, and angular momentum of disk galaxies reflect analogous correlations between the structural parameters of their surrounding dark matter halos. The numerical experiments follow the formation of galaxy-sized halos in two Cold Dark Matter dominated universes: the standard Omega=1 CDM scenario and the currently popular LCDM model. We find that the slope and scatter of the I-band Tully-Fisher relation are well reproduced in the simulations, although not, as proposed in recent work, as a result of the cosmological equivalence between halo mass and circular velocity: large systematic variations in the fraction of baryons that collapse to form galaxies and in the ratio between halo and disk circular velocities are observed in our numerical experiments. The Tully-Fisher slope and scatter are recovered in this model as a direct result of the dynamical response of the halo to the assembly of the luminous component of the galaxy. We conclude that models that neglect the self-gravity of the disk and its influence on the detailed structure of the halo cannot be used to derive meaningful estimates of the scatter or slope of the Tully-Fisher relation. Our models fail, however, to match the zero-point of the Tully-Fisher relation, as well as that of the relation linking disk rotation speed and angular momentum. These failures can be traced, respectively, to the excessive central concentration of dark halos formed in the Cold Dark Matter cosmogonies we explore and to the formation of galaxy disks as the final outcome of a sequence of merger events. (abridged)Comment: submitted to The Astrophysical Journa

    Majorana spinors and extended Lorentz symmetry in four-dimensional theory

    Full text link
    An extended local Lorentz symmetry in four-dimensional (4D) theory is considered. A source of this symmetry is a group of general linear transformations of four-component Majorana spinors GL(4,M) which is isomorphic to GL(4,R) and is the covering of an extended Lorentz group in a 6D Minkowski space M(3,3) including superluminal and scaling transformations. Physical space-time is assumed to be a 4D pseudo-Riemannian manifold. To connect the extended Lorentz symmetry in the M(3,3) space with the physical space-time, a fiber bundle over the 4D manifold is introduced with M(3,3) as a typical fiber. The action is constructed which is invariant with respect to both general 4D coordinate and local GL(4,M) spinor transformations. The components of the metric on the 6D fiber are expressed in terms of the 4D pseudo-Riemannian metric and two extra complex fields: 4D vector and scalar ones. These extra fields describe in the general case massive particles interacting with an extra U(1) gauge field and weakly interacting with ordinary particles, i.e. possessing properties of invisible (dark) matter.Comment: 24 page

    Self-similar collapse and the structure of dark matter halos: A fluid approach

    Full text link
    We explore the dynamical restrictions on the structure of dark matter halos through a study of cosmological self-similar gravitational collapse solutions. A fluid approach to the collisionless dynamics of dark matter is developed and the resulting closed set of moment equations are solved numerically including the effect of halo velocity dispersions (both radial and tangential), for a range of spherically averaged initial density profiles. Our results highlight the importance of tangential velocity dispersions to obtain density profiles shallower than 1/r21/r^2 in the core regions, and for retaining a memory of the initial density profile, in self-similar collapse. For an isotropic core velocity dispersion only a partial memory of the initial density profile is retained. If tangential velocity dispersions in the core are constrained to be less than the radial dispersion, a cuspy core density profile shallower than 1/r1/r cannot obtain, in self-similar collapse.Comment: 25 pages, 7 figures, submitted to Ap

    Quantum System Identification by Bayesian Analysis of Noisy Data: Beyond Hamiltonian Tomography

    Full text link
    We consider how to characterize the dynamics of a quantum system from a restricted set of initial states and measurements using Bayesian analysis. Previous work has shown that Hamiltonian systems can be well estimated from analysis of noisy data. Here we show how to generalize this approach to systems with moderate dephasing in the eigenbasis of the Hamiltonian. We illustrate the process for a range of three-level quantum systems. The results suggest that the Bayesian estimation of the frequencies and dephasing rates is generally highly accurate and the main source of errors are errors in the reconstructed Hamiltonian basis.Comment: 6 pages, 3 figure

    The Evolution of the Galaxy Sizes in the NTT Deep Field: a Comparison with CDM Models

    Get PDF
    The sizes of the field galaxies with I<25 have been measured in the NTT Deep Field. Intrinsic sizes have been obtained after deconvolution of the PSF with a multigaussian method. The reliability of the method has been tested using both simulated data and HST observations of the same field. The distribution of the half light radii is peaked at r_{hl} 0.3 arcsec, in good agreement with that derived from HST images at the same magnitude. An approximate morphological classification has been obtained using the asymmetry and concentration parameters. The intrinsic sizes of the galaxies are shown as a function of their redshifts and absolute magnitudes using photometric redshifts derived from the multicolor catalog. While the brighter galaxies with morphological parameters typical of the normal spirals show a flat distribution in the range r_{d}=1-6 kpc, the fainter population at 0.4<z<0.8 dominates at small sizes. To explore the significance of this behaviour, an analytical rendition of the standard CDM model for the disc size evolution has been computed. The model showing the best fit to the local luminosity function and the Tully-Fisher relation is able to reproduce at intermediate redshifts a size distribution in general agreement with the observations, although it tends to underestimate the number of galaxies fainter than M_B~ -19 with disk sizes r_d~ 1-2 kpc.Comment: 16 pages, 11 figures, ApJ in press, Dec 199

    The cosmological origin of the Tully-Fisher relation

    Get PDF
    We use high-resolution cosmological simulations that include the effects of gasdynamics and star formation to investigate the origin of the Tully-Fisher relation in the standard Cold Dark Matter cosmogony. Luminosities are computed for each model galaxy using their full star formation histories and the latest spectrophotometric models. We find that at z=0 the stellar mass of model galaxies is proportional to the total baryonic mass within the virial radius of their surrounding halos. Circular velocity then correlates tightly with the total luminosity of the galaxy, reflecting the equivalence between mass and circular velocity of systems identified in a cosmological context. The slope of the relation steepens slightly from the red to the blue bandpasses, and is in fairly good agreement with observations. Its scatter is small, decreasing from \~0.45 mag in the U-band to ~0.34 mag in the K-band. The particular cosmological model we explore here seems unable to account for the zero-point of the correlation. Model galaxies are too faint at z=0 (by about two magnitudes) if the circular velocity at the edge of the luminous galaxy is used as an estimator of the rotation speed. The Tully-Fisher relation is brighter in the past, by about ~0.7 magnitudes in the B-band at z=1, at odds with recent observations of z~1 galaxies. We conclude that the slope and tightness of the Tully-Fisher relation can be naturally explained in hierarchical models but that its normalization and evolution depend strongly on the star formation algorithm chosen and on the cosmological parameters that determine the universal baryon fraction and the time of assembly of galaxies of different mass.Comment: 5 pages, 4 figures included, submitted to ApJ (Letters
    • 

    corecore