27,860 research outputs found
O\u27er the Far Blue Mountain
O\u27er the far blue mountain,O\u27er the white sea foam,Come thou long parted one,Back to thy home.When the bright fire shineth,Sad looks thy place;While the true heart pineth,Missing thy face.O\u27er the far blue mountain,O\u27er the white sea foam,Come thou long parted one,Come to thy home.Ah!Ah!Music is sorrowfulSince thou art gone,Sisters are mourning thee,Come to thine own.Hark! how lone voices callBack to thy rest,Come to thy Fathers hall,Thy Mothers breast.O\u27er the far blue mountain,O\u27er the white sea foam,Come thou long parted one,Come to thy home.Ah!Ah
Propulsion system mathematical model for a lift/cruise fan V/STOL aircraft
A propulsion system mathematical model is documented that allows calculation of internal engine parameters during transient operation. A non-realtime digital computer simulation of the model is presented. It is used to investigate thrust response and modulation requirements as well as the impact of duty cycle on engine life and design criteria. Comparison of simulation results with steady-state cycle deck calculations showed good agreement. The model was developed for a specific 3-fan subsonic V/STOL aircraft application, but it can be adapted for use with any similar lift/cruise V/STOL configuration
Temperature Anisotropies and Distortions Induced by Hot Intracluster Gas on the Cosmic Microwave Background
The power spectrum of temperature anisotropies induced by hot intracluster
gas on the cosmic background radiation is calculated. For low multipoles it
remains constant while at multipoles above it is exponentially damped.
The shape of the radiation power spectrum is almost independent of the average
intracluster gas density profile, gas evolution history or clusters virial
radii; but the amplitude depends strongly on those parameters and could be as
large as 20% that of intrinsic contribution. The exact value depends on the
global properties of the cluster population and the evolution of the
intracluster gas. The distortion on the Cosmic Microwave Background black body
spectra varies in a similar manner. The ratio of the temperature anisotropy to
the mean Comptonization parameters is shown to be almost independent of the
cluster model and, in first approximation, depends only on the number density
of clusters.Comment: 10 pages, Latex, 3 figures; to be published in Ap
Understudied and Underfunded: Potential Causes of Mass Shootings and Implications for Counseling Research
Mass shootings are becoming more commonplace in our society. Despite this increase in frequency, research on mass violence has lagged behind due to halted federal research funding. Counselors and other mental health professionals find themselves at the forefront of this issue due to the contentious debate surrounding the intersection of mental health issues and mass shootings. The purpose of this article is to increase awareness of the cause of this dearth of research, examine what is currently known in the limited scholarly literature, and discuss what still needs to be explored. Implications for positive social change and advocacy efforts are also provided
Dark Halo and Disk Galaxy Scaling Laws in Hierarchical Universes
We use cosmological N-body/gasdynamical simulations that include star
formation and feedback to examine the proposal that scaling laws between the
total luminosity, rotation speed, and angular momentum of disk galaxies reflect
analogous correlations between the structural parameters of their surrounding
dark matter halos. The numerical experiments follow the formation of
galaxy-sized halos in two Cold Dark Matter dominated universes: the standard
Omega=1 CDM scenario and the currently popular LCDM model. We find that the
slope and scatter of the I-band Tully-Fisher relation are well reproduced in
the simulations, although not, as proposed in recent work, as a result of the
cosmological equivalence between halo mass and circular velocity: large
systematic variations in the fraction of baryons that collapse to form galaxies
and in the ratio between halo and disk circular velocities are observed in our
numerical experiments. The Tully-Fisher slope and scatter are recovered in this
model as a direct result of the dynamical response of the halo to the assembly
of the luminous component of the galaxy. We conclude that models that neglect
the self-gravity of the disk and its influence on the detailed structure of the
halo cannot be used to derive meaningful estimates of the scatter or slope of
the Tully-Fisher relation. Our models fail, however, to match the zero-point of
the Tully-Fisher relation, as well as that of the relation linking disk
rotation speed and angular momentum. These failures can be traced,
respectively, to the excessive central concentration of dark halos formed in
the Cold Dark Matter cosmogonies we explore and to the formation of galaxy
disks as the final outcome of a sequence of merger events. (abridged)Comment: submitted to The Astrophysical Journa
Majorana spinors and extended Lorentz symmetry in four-dimensional theory
An extended local Lorentz symmetry in four-dimensional (4D) theory is
considered. A source of this symmetry is a group of general linear
transformations of four-component Majorana spinors GL(4,M) which is isomorphic
to GL(4,R) and is the covering of an extended Lorentz group in a 6D Minkowski
space M(3,3) including superluminal and scaling transformations. Physical
space-time is assumed to be a 4D pseudo-Riemannian manifold. To connect the
extended Lorentz symmetry in the M(3,3) space with the physical space-time, a
fiber bundle over the 4D manifold is introduced with M(3,3) as a typical fiber.
The action is constructed which is invariant with respect to both general 4D
coordinate and local GL(4,M) spinor transformations. The components of the
metric on the 6D fiber are expressed in terms of the 4D pseudo-Riemannian
metric and two extra complex fields: 4D vector and scalar ones. These extra
fields describe in the general case massive particles interacting with an extra
U(1) gauge field and weakly interacting with ordinary particles, i.e.
possessing properties of invisible (dark) matter.Comment: 24 page
Self-similar collapse and the structure of dark matter halos: A fluid approach
We explore the dynamical restrictions on the structure of dark matter halos
through a study of cosmological self-similar gravitational collapse solutions.
A fluid approach to the collisionless dynamics of dark matter is developed and
the resulting closed set of moment equations are solved numerically including
the effect of halo velocity dispersions (both radial and tangential), for a
range of spherically averaged initial density profiles. Our results highlight
the importance of tangential velocity dispersions to obtain density profiles
shallower than in the core regions, and for retaining a memory of the
initial density profile, in self-similar collapse. For an isotropic core
velocity dispersion only a partial memory of the initial density profile is
retained. If tangential velocity dispersions in the core are constrained to be
less than the radial dispersion, a cuspy core density profile shallower than
cannot obtain, in self-similar collapse.Comment: 25 pages, 7 figures, submitted to Ap
Quantum System Identification by Bayesian Analysis of Noisy Data: Beyond Hamiltonian Tomography
We consider how to characterize the dynamics of a quantum system from a
restricted set of initial states and measurements using Bayesian analysis.
Previous work has shown that Hamiltonian systems can be well estimated from
analysis of noisy data. Here we show how to generalize this approach to systems
with moderate dephasing in the eigenbasis of the Hamiltonian. We illustrate the
process for a range of three-level quantum systems. The results suggest that
the Bayesian estimation of the frequencies and dephasing rates is generally
highly accurate and the main source of errors are errors in the reconstructed
Hamiltonian basis.Comment: 6 pages, 3 figure
The Evolution of the Galaxy Sizes in the NTT Deep Field: a Comparison with CDM Models
The sizes of the field galaxies with I<25 have been measured in the NTT Deep
Field. Intrinsic sizes have been obtained after deconvolution of the PSF with a
multigaussian method. The reliability of the method has been tested using both
simulated data and HST observations of the same field. The distribution of the
half light radii is peaked at r_{hl} 0.3 arcsec, in good agreement with that
derived from HST images at the same magnitude. An approximate morphological
classification has been obtained using the asymmetry and concentration
parameters. The intrinsic sizes of the galaxies are shown as a function of
their redshifts and absolute magnitudes using photometric redshifts derived
from the multicolor catalog. While the brighter galaxies with morphological
parameters typical of the normal spirals show a flat distribution in the range
r_{d}=1-6 kpc, the fainter population at 0.4<z<0.8 dominates at small sizes. To
explore the significance of this behaviour, an analytical rendition of the
standard CDM model for the disc size evolution has been computed. The model
showing the best fit to the local luminosity function and the Tully-Fisher
relation is able to reproduce at intermediate redshifts a size distribution in
general agreement with the observations, although it tends to underestimate the
number of galaxies fainter than M_B~ -19 with disk sizes r_d~ 1-2 kpc.Comment: 16 pages, 11 figures, ApJ in press, Dec 199
The cosmological origin of the Tully-Fisher relation
We use high-resolution cosmological simulations that include the effects of
gasdynamics and star formation to investigate the origin of the Tully-Fisher
relation in the standard Cold Dark Matter cosmogony. Luminosities are computed
for each model galaxy using their full star formation histories and the latest
spectrophotometric models. We find that at z=0 the stellar mass of model
galaxies is proportional to the total baryonic mass within the virial radius of
their surrounding halos. Circular velocity then correlates tightly with the
total luminosity of the galaxy, reflecting the equivalence between mass and
circular velocity of systems identified in a cosmological context. The slope of
the relation steepens slightly from the red to the blue bandpasses, and is in
fairly good agreement with observations. Its scatter is small, decreasing from
\~0.45 mag in the U-band to ~0.34 mag in the K-band. The particular
cosmological model we explore here seems unable to account for the zero-point
of the correlation. Model galaxies are too faint at z=0 (by about two
magnitudes) if the circular velocity at the edge of the luminous galaxy is used
as an estimator of the rotation speed. The Tully-Fisher relation is brighter in
the past, by about ~0.7 magnitudes in the B-band at z=1, at odds with recent
observations of z~1 galaxies. We conclude that the slope and tightness of the
Tully-Fisher relation can be naturally explained in hierarchical models but
that its normalization and evolution depend strongly on the star formation
algorithm chosen and on the cosmological parameters that determine the
universal baryon fraction and the time of assembly of galaxies of different
mass.Comment: 5 pages, 4 figures included, submitted to ApJ (Letters
- âŠ