2,139 research outputs found

    Acoustic fatigue and sound transmission characteristics of a ram composite panel design

    Get PDF
    An experimental study to determine the acoustic fatigue characteristics of a flat multi-layered structural panel is described. The test panel represented a proposed design for the outer skin of a research application module to be housed within the space shuttle orbiter vehicle. The test specimen was mounted in one wall of the Wyle 100,000 cu ft reverberation room and exposed to a broadband acoustic environment having an overall level of 145 db. The test panel was exposed to nine separate applications of the acoustic environment, each application consisting of 250 seconds duration. Upon completion of the ninth test run, the specimen was exposed to a simulated micrometeoroid impact near the panel center. One additional test run of 250 seconds duration was then performed to complete the overall simulation of 50 flight missions. The experimental results show that no significant fatigue damage occurred until the test specimen was exposed to a simulated micrometeoroid impact. The intermediate foam layer forming the core of the test specimen suffered considerable damage due to this impact, causing a marked variation in the dynamic characteristics of the overall test panel. During the final application of the acoustic environment, the strain and acceleration response spectra showed considerable variation from those spectra obtained prior to impact of the panel. Fatigue damage from acoustic loading however, was limited to partial de-bonding around the edges of the composite panel

    Historical roots of Agile methods: where did “Agile thinking” come from?

    No full text
    The appearance of Agile methods has been the most noticeable change to software process thinking in the last fifteen years [16], but in fact many of the “Agile ideas” have been around since 70’s or even before. Many studies and reviews have been conducted about Agile methods which ascribe their emergence as a reaction against traditional methods. In this paper, we argue that although Agile methods are new as a whole, they have strong roots in the history of software engineering. In addition to the iterative and incremental approaches that have been in use since 1957 [21], people who criticised the traditional methods suggested alternative approaches which were actually Agile ideas such as the response to change, customer involvement, and working software over documentation. The authors of this paper believe that education about the history of Agile thinking will help to develop better understanding as well as promoting the use of Agile methods. We therefore present and discuss the reasons behind the development and introduction of Agile methods, as a reaction to traditional methods, as a result of people's experience, and in particular focusing on reusing ideas from histor

    Artefacts in geometric phase analysis of compound materials

    Full text link
    The geometric phase analysis (GPA) algorithm is known as a robust and straightforward technique that can be used to measure lattice strains in high resolution transmission electron microscope (TEM) images. It is also attractive for analysis of aberration-corrected scanning TEM (ac-STEM) images that resolve every atom column, since it uses Fourier transforms and does not require real-space peak detection and assignment to appropriate sublattices. Here it is demonstrated that in ac-STEM images of compound materials (i.e. with more than one atom per unit cell) an additional phase is present in the Fourier transform. If the structure changes from one area to another in the image (e.g. across an interface), the change in this additional phase will appear as a strain in conventional GPA, even if there is no lattice strain. Strategies to avoid this pitfall are outlined.Comment: 9 pages, 7 figures, Preprint before review, submitted to Ultramicroscopy 7 April 201

    Tutorial on Hybridizable Discontinous Galerkin (HDG) for second-order elliptic problems

    Get PDF
    The HDG is a new class of discontinuous Galerkin (DG) methods that shares favorable properties with classical mixed methods such as the well known Raviart-Thomas methods. In particular, HDG provides optimal convergence of both the primal and the dual variables of the mixed formulation. This property enables the construction of superconvergent solutions, contrary to other popular DG methods. In addition, its reduced computational cost, compared to other DG methods, has made HDG an attractive alternative for solving problems governed by partial differential equations. A tutorial on HDG for the numerical solution of second-order elliptic problems is presented. Particular emphasis is placed on providing all the necessary details for the implementation of HDG methods.Peer ReviewedPreprin

    Assessing the usefulness of acute physiological responses following resistance exercise: sensitivity, magnitude of change and time course of measures

    Get PDF
    A variety of strategies exist to modulate acute physiological responses following resistance exercise aimed at enhancing recovery and/or adaptation processes. To assess the true impact of these strategies, it is important to know the ability of measures to detect meaningful change. We investigated the sensitivity of measures used to quantify acute physiological responses to resistance exercise and constructed a physiological profile to characterise the magnitude of change and time course of this response. Eight males, accustomed to regular resistance exercise, performed experimental sessions during a ‘control week’, void of an exercise stimulus. Participants repeated this sequence of experimental sessions the following week, termed the ‘exercise week’, except they performed a bout of lower-limb resistance exercise following baseline assessments. Assessments were conducted at baseline, 2, 6, 24, 48, 72 and 96 h post-intervention. Based on the signal-to-noise ratio, the most sensitive measures were maximal voluntary isometric contraction, 20m sprint, countermovement jump peak force, rate of force development (100-200ms), muscle soreness, daily analysis of life demands for athletes Part B, limb girth, matrix metalloproteinase-9, interleukin-6, creatine kinase and high sensitivity C-reactive protein with ratios of >1.5. There were clear changes in these measures following resistance exercise, determined via magnitude-based inferences. These findings highlight measures that can detect real changes in acute physiological responses following resistance exercise in trained individuals. Researchers investigating strategies to manipulate acute physiological responses for recovery and/or adaptation can use these measures, as well as recommended sampling points, to be confident that their interventions are making a worthwhile impact

    Matter-wave dark solitons: stochastic vs. analytical results

    Get PDF
    The dynamics of dark matter-wave solitons in elongated atomic condensates are discussed at finite temperatures. Simulations with the stochastic Gross-Pitaevskii equation reveal a noticeable, experimentally observable spread in individual soliton trajectories, attributed to inherent fluctuations in both phase and density of the underlying medium. Averaging over a number of such trajectories (as done in experiments) washes out such background fluctuations, revealing a well-defined temperature-dependent temporal growth in the oscillation amplitude. The average soliton dynamics is well captured by the simpler dissipative Gross-Pitaevskii equation, both numerically and via an analytically-derived equation for the soliton center based on perturbation theory for dark solitons.Comment: 4 pages, 3 figures. Added several reference

    Intersublevel Polaron Dephasing in Self-Assembled Quantum Dots

    Full text link
    Polaron dephasing processes are investigated in InAs/GaAs dots using far-infrared transient four wave mixing (FWM) spectroscopy. We observe an oscillatory behaviour in the FWM signal shortly (< 5 ps) after resonant excitation of the lowest energy conduction band transition due to coherent acoustic phonon generation. The subsequent single exponential decay yields long intraband dephasing times of 90 ps. We find excellent agreement between our measured and calculated FWM dynamics, and show that both real and virtual acoustic phonon processes are necessary to explain the temperature dependence of the polarization decay.Comment: 10 pages, 4 figures, submitted to Phys Rev Let
    • 

    corecore