8 research outputs found

    Liquid-gas phase transition in nuclear multifragmentation

    Get PDF
    The equation of state of nuclear matter suggests that at suitable beam energies the disassembling hot system formed in heavy ion collisions will pass through a liquid-gas coexistence region. Searching for the signatures of the phase transition has been a very important focal point of experimental endeavours in heavy ion collisions, in the last fifteen years. Simultaneously theoretical models have been developed to provide information about the equation of state and reaction mechanisms consistent with the experimental observables. This article is a review of this endeavour.Comment: 63 pages, 27 figures, submitted to Adv. Nucl. Phys. Some typos corrected, minor text change

    Phases of Dense Matter in Compact Stars

    No full text
    Formed in the aftermath of gravitational core-collapse supernova explosions, neutron stars are unique cosmic laboratories for probing the properties of matter under extreme conditions that cannot be reproduced in terrestrial laboratories. The interior of a neutron star, endowed with the highest magnetic fields known and with densities spanning about ten orders of magnitude from the surface to the centre, is predicted to exhibit various phases of dense strongly interacting matter, whose physics is reviewed in this chapter. The outer layers of a neutron star consist of a solid nuclear crust, permeated by a neutron ocean in its densest region, possibly on top of a nuclear “pasta” mantle. The properties of these layers and of the homogeneous isospin asymmetric nuclear matter beneath constituting the outer core may still be constrained by terrestrial experiments. The inner core of highly degenerate, strongly interacting matter poses a few puzzles and questions which are reviewed here together with perspectives for their resolution. Consequences of the dense-matter phases for observables such as the neutron-star mass-radius relationship and the prospects to uncover their structure with modern observational programmes are touched upon.info:eu-repo/semantics/publishe

    Nuclear Equation of state for Compact Stars and Supernovae

    No full text
    International audienceThe equation of state (EoS) of hot and dense matter is a fundamental input to describe static and dynamical properties of neutron stars, core-collapse supernovae and binary compact-star mergers. We review the current status of the EoS for compact objects, that have been studied with both ab-initio many-body approaches and phenomenological models. We limit ourselves to the description of EoSs with purely nucleonic degrees of freedom, disregarding the appearance of strange baryonic matter and/or quark matter. We compare the theoretical predictions with different data coming from both nuclear physics experiments and astrophysical observations. Combining the complementary information thus obtained greatly enriches our insights into the dense nuclear matter properties. Current challenges in the description of the EoS are also discussed, mainly focusing on the model dependence of the constraints extracted from either experimental or observational data (specifically, concerning the symmetry energy), the lack of a consistent and rigorous many-body treatment at zero and finite temperature of the matter encountered in compact stars (e.g. problem of cluster formation and extension of the EoS to very high temperatures), the role of nucleonic three-body forces, and the dependence of the direct URCA processes on the EoS
    corecore