2,548 research outputs found

    Design and simulation of a testing fixture for planar magnetic levitation system control using switched reluctance actuator

    Get PDF
    Author name used in this publication: Norbert C. CheungRefereed conference paper2008-2009 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Integral sliding mode control with integral switching gain for magnetic levitation apparatus

    Get PDF
    Author name used in this publication: Norbert C. CheungRefereed conference paper2008-2009 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Nonlinear effects in superconducting thin film microwave resonators

    Get PDF
    We discuss how reactive and dissipative non-linearities affect the intrinsic response of superconducting thin-film resonators. We explain how most, if not all, of the complex phenomena commonly seen can be described by a model in which the underlying resonance is a single-pole Lorentzian, but whose centre frequency and quality factor change as external parameters, such as readout power and frequency, are varied. What is seen during a vector-network-analyser measurement is series of samples taken from an ideal Lorentzian that is shifting and spreading as the readout frequency is changed. According to this model, it is perfectly proper to refer to, and measure, the resonant frequency and quality factor of the underlying resonance, even though the swept-frequency curves appear highly distorted and hysteretic. In those cases where the resonance curve is highly distorted, the specific shape of the trajectory in the Argand plane gives valuable insights into the second-order physical processes present. We discuss the formulation and consequences of this approach in the case of non-linear kinetic inductance, two-level-system loss, quasiparticle generation, and a generic model based on a power-law form. The generic model captures the key features of specific dissipative non-linearities, but additionally leads to insights into how general dissipative processes create characteristic forms in the Argand plane. We provide detailed formulations in each case, and indicate how they lead to the wide variety of phenomena commonly seen in experimental data. We also explain how the properties of the underlying resonance can be extracted from this data. Overall, our paper provides a self-contained compendium of behaviour that will help practitioners interpret and determine important parameters from distorted swept-frequency measurements

    Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma)

    Get PDF
    Constraining the growth of the Tibetan Plateau in time and space is critical for testing geodynamic models and climatic changes at the regional and global scale. The Lhasa block is a key region for unraveling the early history of the Tibetan Plateau. Distinct from the underlying shallow-marine limestones, the Jingzhushan and Daxiong formations consist of conglomerate and sandstone deposited in alluvial-fan and braided-river systems. Both units were deposited at ca. 92 Ma, as constrained by interbedded tuff layers, detrital zircons, and micropaleontological data. Provenance and paleocurrent analyses indicate that both units were derived from the same elevated source area located in the central-northern Lhasa block. These two parallel belts of coeval conglomerates record a major change in paleogeography of the source region from a shallow seaway to a continental highland, implying initial topographic growth of an area over 160,000 km2, named here the Northern Lhasaplano. The early Late Cretaceous topographic growth of the Northern Lhasaplano was associated with the demise of Tethyan seaways, thrust-belt development, and crustal thickening. The same paleogeographic and paleotectonic changes were recorded earlier in the Northern Lhasaplano than in the Southern Lhasaplano, indicating progressive topographic growth from north to south across the Bangong-Nujiang suture and Lhasa block during the Cretaceous. Similar to the Central Andean Plateau, the Northern Lhasaplano developed by plate convergence above the oceanic Neo-Tethyan subduction zone before the onset of the India-Asia collision

    Topological semimetal in a fermionic optical lattice

    Full text link
    Optical lattices play a versatile role in advancing our understanding of correlated quantum matter. The recent implementation of orbital degrees of freedom in chequerboard and hexagonal optical lattices opens up a new thrust towards discovering novel quantum states of matter, which have no prior analogs in solid state electronic materials. Here, we demonstrate that an exotic topological semimetal emerges as a parity-protected gapless state in the orbital bands of a two-dimensional fermionic optical lattice. The new quantum state is characterized by a parabolic band-degeneracy point with Berry flux 2π2\pi, in sharp contrast to the π\pi flux of Dirac points as in graphene. We prove that the appearance of this topological liquid is universal for all lattices with D4_4 point group symmetry as long as orbitals with opposite parities hybridize strongly with each other and the band degeneracy is protected by odd parity. Turning on inter-particle repulsive interactions, the system undergoes a phase transition to a topological insulator whose experimental signature includes chiral gapless domain-wall modes, reminiscent of quantum Hall edge states.Comment: 6 pages, 3 figures and Supplementary Informatio

    Glucose lowering effect of transgenic human insulin-like growth factor-I from rice: in vitro and in vivo studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human insulin-like growth factor-I (hIGF-I) is a growth factor which is highly resemble to insulin. It is essential for cell proliferation and has been proposed for treatment of various endocrine-associated diseases including growth hormone insensitivity syndrome and diabetes mellitus. In the present study, an efficient plant expression system was developed to produce biologically active recombinant hIGF-I (rhIGF-I) in transgenic rice grains.</p> <p>Results</p> <p>The plant-codon-optimized hIGF-I was introduced into rice via <it>Agrobacterium</it>-mediated transformation. To enhance the stability and yield of rhIGF-I, the endoplasmic reticulum-retention signal and glutelin signal peptide were used to deliver rhIGF-I to endoplasmic reticulum for stable accumulation. We found that only glutelin signal peptide could lead to successful expression of hIGF-I and one gram of hIGF-I rice grain possessed the maximum activity level equivalent to 3.2 micro molar of commercial rhIGF-I. <it>In vitro </it>functional analysis showed that the rice-derived rhIGF-I was effective in inducing membrane ruffling and glucose uptake on rat skeletal muscle cells. Oral meal test with rice-containing rhIGF-I acutely reduced blood glucose levels in streptozotocin-induced and Zucker diabetic rats, whereas it had no effect in normal rats.</p> <p>Conclusion</p> <p>Our findings provided an alternative expression system to produce large quantities of biologically active rhIGF-I. The provision of large quantity of recombinant proteins will promote further research on the therapeutic potential of rhIGF-I.</p

    Topological orbital ladders

    Full text link
    We unveil a topological phase of interacting fermions on a two-leg ladder of unequal parity orbitals, derived from the experimentally realized double-well lattices by dimension reduction. Z2Z_2 topological invariant originates simply from the staggered phases of spsp-orbital quantum tunneling, requiring none of the previously known mechanisms such as spin-orbit coupling or artificial gauge field. Another unique feature is that upon crossing over to two dimensions with coupled ladders, the edge modes from each ladder form a parity-protected flat band at zero energy, opening the route to strongly correlated states controlled by interactions. Experimental signatures are found in density correlations and phase transitions to trivial band and Mott insulators.Comment: 12 pages, 5 figures, Revised title, abstract, and the discussion on Majorana numbe

    ARPES: A probe of electronic correlations

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods of studying the electronic structure of solids. By measuring the kinetic energy and angular distribution of the electrons photoemitted from a sample illuminated with sufficiently high-energy radiation, one can gain information on both the energy and momentum of the electrons propagating inside a material. This is of vital importance in elucidating the connection between electronic, magnetic, and chemical structure of solids, in particular for those complex systems which cannot be appropriately described within the independent-particle picture. Among the various classes of complex systems, of great interest are the transition metal oxides, which have been at the center stage in condensed matter physics for the last four decades. Following a general introduction to the topic, we will lay the theoretical basis needed to understand the pivotal role of ARPES in the study of such systems. After a brief overview on the state-of-the-art capabilities of the technique, we will review some of the most interesting and relevant case studies of the novel physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancini, Springer Series in Solid-State Sciences (2013). A high-resolution version can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf. arXiv admin note: text overlap with arXiv:cond-mat/0307085, arXiv:cond-mat/020850
    corecore