35 research outputs found

    Production and perception of situationally variable alarm calls in wild tufted capuchin monkeys (Cebus apella nigritus)

    Get PDF
    Many mammalian and avian species produce conspicuous vocalizations upon encountering a predator, but vary their calling based on risk urgency and/or predator type. Calls falling into the latter category are termed “functionally referential” if they also elicit predator-appropriate reactions in listeners. Functionally referential alarm calling has been well documented in a number of Old World monkeys and lemurs, but evidence among Neotropical primates is limited. This study investigates the alarm call system of tufted capuchin monkeys (Cebus apella nigritus) by examining responses to predator and snake decoys encountered at various distances (reflecting differences in risk urgency). Observations in natural situations were conducted to determine if predator-associated calls were given in additional contexts. Results indicate the use of three call types. “Barks” are elicited exclusively by aerial threats, but the call most commonly given to terrestrial threats (the “hiccup”) is given in nonpredatory contexts. The rate in which this latter call is produced reflects risk urgency. Playbacks of these two call types indicate that each elicits appropriate antipredator behaviors. The third call type, the “peep,” seems to be specific to terrestrial threats, but it is unknown if the call elicits predator-specific responses. “Barks” are thus functionally referential aerial predator calls, while “hiccups” are better seen as generalized disturbance calls which reflect risk urgency. Further evidence is needed to draw conclusions regarding the “peep.” These results add to the evidence that functionally referential aerial predator alarm calls are ubiquitous in primates, but that noncatarrhine primates use generalized disturbance calls in response to terrestrial threats

    Expression and secretion of the novel adipokine tartrate-resistant acid phosphatase from adipose tissues of obese and lean women.

    No full text
    International audienceOBJECTIVE: Tartrate-resistant acid phosphatase (TRAP) expressed by adipose tissue macrophages (ATMs) induces mice obesity and human adipocyte differentiation in vitro. This study aimed to investigate whether TRAP was secreted differently from human obese versus lean adipose tissues and to identify the cellular source of adipose tissue TRAP. DESIGN: Subcutaneous adipose tissues obtained from healthy subjects. Enzyme-linked immunosorbent assays (ELISAs) for total (5a+5b) and cleaved TRAP (5b) were used. TRAP secretion was determined in adipose tissue biopsies, and mRNA expression was studied in cell types isolated from the same. SUBJECTS: Results of 24 lean and 24 obese women (in vitro) and 8 subjects (in vivo) were compared. The main outcome measurements were TRAP expression and secretion in vitro and in vivo. RESULTS: In-house total TRAP ELISA showed high sensitivity and a coefficient of variance of 11%. Adipose secretion of total TRAP was linear in vitro with time and was evident in vivo. Total TRAP secretion in vitro was similar in lean and obese women expressed per unit weight of the adipose tissue but correlated positively with the number/size of adipocytes (P ≀ 0.01) and with adipose secretion of tumor necrosis factor-α and interleukin-6 (P<0.01). TRAP 5b was not secreted from the adipose tissue. ATMs displayed highest cellular expression of TRAP mRNA in adipose tissue cells derived from lean or obese women. CONCLUSIONS: TRAP is a novel human adipokine produced by macrophages and secreted from the subcutaneous adipose tissue in vivo and in vitro. Secretion is linked to the size and number of adipocytes, as well as to concomitant secretion of inflammatory mediators, suggesting that TRAP is involved in fat accumulation and adipose inflammation
    corecore