259 research outputs found

    Social Europe. No 2/87

    Get PDF
    BACKGROUND: DNA methylation is an important type of epigenetic modification involved in gene regulation. Although strong DNA methylation at promoters is widely recognized to be associated with transcriptional repression, many aspects of DNA methylation remain not fully understood, including the quantitative relationships between DNA methylation and expression levels, and the individual roles of promoter and gene body methylation. RESULTS: Here we present an integrated analysis of whole-genome bisulfite sequencing and RNA sequencing data from human samples and cell lines. We find that while promoter methylation inversely correlates with gene expression as generally observed, the repressive effect is clear only on genes with a very high DNA methylation level. By means of statistical modeling, we find that DNA methylation is indicative of the expression class of a gene in general, but gene body methylation is a better indicator than promoter methylation. These findings are general in that a model constructed from a sample or cell line could accurately fit the unseen data from another. We further find that promoter and gene body methylation have minimal redundancy, and either one is sufficient to signify low expression. Finally, we obtain increased modeling power by integrating histone modification data with the DNA methylation data, showing that neither type of information fully subsumes the other. CONCLUSION: Our results suggest that DNA methylation outside promoters also plays critical roles in gene regulation. Future studies on gene regulatory mechanisms and disease-associated differential methylation should pay more attention to DNA methylation at gene bodies and other non-promoter regions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-014-0408-0) contains supplementary material, which is available to authorized users

    Impact of leg lengthening on viscoelastic properties of the deep fascia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the morphological alterations of the deep fascia subjected to leg lengthening have been investigated in cellular and extracellular aspects, the impact of leg lengthening on viscoelastic properties of the deep fascia remains largely unknown. This study aimed to address the changes of viscoelastic properties of the deep fascia during leg lengthening using uniaxial tensile test.</p> <p>Methods</p> <p>Animal model of leg lengthening was established in New Zealand white rabbits. Distraction was initiated at a rate of 1 mm/day and 2 mm/day in two steps, and preceded until increases of 10% and 20% in the initial length of tibia had been achieved. The deep fascia specimens of 30 mm Γ— 10 mm were clamped with the Instron 1122 tensile tester at room temperature with a constant tensile rate of 5 mm/min. After 5 load-download tensile tests had been performed, the specimens were elongated until rupture. The load-displacement curves were automatically generated.</p> <p>Results</p> <p>The normal deep fascia showed typical viscoelastic rule of collagenous tissues. Each experimental group of the deep fascia after leg lengthening kept the properties. The curves of the deep fascia at a rate of 1 mm/day with 20% increase in tibia length were the closest to those of normal deep fascia. The ultimate tension strength and the strain at rupture on average of normal deep fascia were 2.69 N (8.97 mN/mm<sup>2</sup>) and 14.11%, respectively. The increases in ultimate tension strength and strain at rupture of the deep fascia after leg lengthening were statistically significant.</p> <p>Conclusion</p> <p>The deep fascia subjected to leg lengthening exhibits viscoelastic properties as collagenous tissues without lengthening other than increased strain and strength. Notwithstanding different lengthening schemes result in varied viscoelastic properties changes, the most comparable viscoelastic properties to be demonstrated are under the scheme of a distraction rate of 1 mm/day and 20% increase in tibia length.</p

    Reduced Expression of Transcription Factor AP-2Ξ± Is Associated with Gastric Adenocarcinoma Prognosis

    Get PDF
    BACKGROUND: This study aims to investigate the expression and prognostic significance of activator protein 2Ξ± (AP-2Ξ±) in gastric adenocarcinoma. METHODOLOGY/PRINCIPAL FINDINGS: AP-2Ξ± expression was analyzed using real-time quantitative PCR (RT-qPCR), western blotting, and immunohistochemical staining methods on tissue samples from a consecutive series of 481 gastric adenocarcinoma patients who underwent resections between 2003 and 2006. The relationship between AP-2Ξ± expression, clinicopathological factors, and patient survival was investigated. RT- qPCR results showed that the expression of AP-2Ξ± mRNA was reduced in tumor tissue samples, compared with expression in matched adjacent non-tumor tissue samples (Pβ€Š=β€Š0.009); this finding was confirmed by western blotting analysis (Pβ€Š=β€Š0.012). Immunohistochemical staining data indicated that AP-2Ξ± expression was significantly decreased in 196 of 481 (40.7%) gastric adenocarcinoma cases; reduced AP-2Ξ± expression was also observed in patients with poorly differentiated tumors (Pβ€Š=β€Š0.001) and total gastric carcinomas (Pβ€Š=β€Š0.002), as well as in patients who underwent palliative tumor resection (Pβ€Š=β€Š0.004). Additionally, reduced expression of AP-2Ξ± was more commonly observed in tumors that were staged as T4a/b (Pβ€Š=β€Š0.018), N3 (Pβ€Š=β€Š0.006), and M1 (Pβ€Š=β€Š0.008). Kaplan-Meier survival curves revealed that reduced expression of AP-2Ξ± was associated with poor prognosis in gastric adenocarcinoma patients (P<0.001). Multivariate Cox analysis identified AP-2Ξ± expression as an independent prognostic factor for overall survival (HRβ€Š=β€Š1.512, 95% CIβ€Š=β€Š1.127-2.029, Pβ€Š=β€Š0.006). CONCLUSIONS/SIGNIFICANCE: Our data suggest that AP-2Ξ± plays an important role in tumor progression and that reduced AP-2Ξ± expression independently predicts an unfavorable prognosis in gastric adenocarcinoma patients

    Antioxidant activity and hepatoprotective potential of agaro-oligosaccharides in vitro and in vivo

    Get PDF
    BACKGROUND: Agaro-oligosaccharides derived from red seaweed polysaccharide have been reported to possess antioxidant activity. In order to assess the live protective effects of agar-oligosaccharides, we did both in vitro and in vivo studies based on own-made agaro-oligosaccharides, and the structural information of this oligosaccharide was also determined. METHOD: Structure of agaro-oligosaccharides prepared with acid hydrolysis on agar was confirmed by matrix-assisted ultraviolet laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) and NMR. The antioxidant effect of agaro-oligosaccharides on intracellular reactive oxygen species (ROS) was assessed by 2', 7'-dichlorofluorescin diacetate. Carbon tetrachloride was used to induce liver injury, some index including SOD, GSH-Px, MDA, AST, ALT were examined to determine the hepatoprotective effect of agaro-oligosaccharides. RESULTS: Agaro-oligosaccharides we got were composed of odd polymerizations with molecular weights ranged from 500 to 2500. Results from intracellular test indicated that agaro-oligosaccharides could significantly scavenge the level of oxidants in the hepatocytes, more beneficially, also associated with the improvement of cell viability In vivo studies of the antioxidant effects on tissue peroxidative damage induced by carbon tetrachloride in rat model indicated that agaro-oligosaccharides could elevate the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and decrease the level of malondialdehyde (MDA), glutamate oxaloacetate transaminase (AST), glutamic pyruvic transaminase (ALT) significantly. At 400 mg/kg, MDA level reduced 44 % and 21 % in liver and heart, SOD and GSH-Px increased to highest in liver and serum, while ALT level decreased 22.16 % in serum. CONCLUSION: Overall, the results of the present study indicate that agaro-oligosaccharides can exert their in vitro and in vivo hepatoprotective effect through scavenging oxidative damage induced by ROS

    Protection of Visual Functions by Human Neural Progenitors in a Rat Model of Retinal Disease

    Get PDF
    BACKGROUND: A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC) protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat. METHODOLOGY/PRINCIPAL FINDINGS: Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90–100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed. CONCLUSIONS/SIGNIFICANCE: Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in vivo

    Irradiation-induced telomerase activity and gastric cancer risk: a case-control analysis in a Chinese Han population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Telomerase expression is one of the characteristics of gastric cancer (GC) cells and telomerase activity is frequently up-regulated by a variety of mechanisms during GC development. Therefore, we hypothesized that elevated levels of activated telomerase might enhance GC risk due to increased propagation of cells with DNA damage, such as induced by Ξ³-radiation.</p> <p>Methods</p> <p>To explore this hypothesis, 246 GC cases and 246 matched controls were recruited in our case-control study. TRAP-ELISA was used to assess the levels of telomerase activity at baseline and after Ξ³-radiation and the Ξ³-radiation-induced telomerase activity (defined as after Ξ³-irradiation/baseline) in cultured peripheral blood lymphocytes (PBLs).</p> <p>Results</p> <p>Our data showed that there was no significant difference for the baseline telomerase activity between GC cases and controls (10.17 Β± 7.21 <it>vs. </it>11.02 Β± 8.03, <it>p </it>= 0.168). However, after Ξ³-radiation treatment, Ξ³-radiation-induced telomerase activity was significantly higher in the cases than in the controls (1.51 Β± 0.93 <it>vs</it>. 1.22 Β± 0.66, <it>p </it>< 0.001). Using the median value of Ξ³-radiation-induced telomerase activity in the controls as a cutoff point, we observed that high Ξ³-radiation-induced telomerase activity was associated with a significantly increased GC risk (adjusted odds ratio, 2.45; 95% confidence interval, 1.83-3.18). Moreover, a dose response association was noted between Ξ³-radiation-induced telomerase activity and GC risk. Age, but not sex, smoking and drinking status seem to have a modulating effect on the Ξ³-radiation-induced telomerase activities in both cases and controls.</p> <p>Conclusion</p> <p>Overall, our findings for the first time suggest that the increased Ξ³-radiation-induced telomerase activity in PBLs might be associated with elevated GC risk. Further confirmation of this association using a prospective study design is warranted.</p

    Origination of New Immunological Functions in the Costimulatory Molecule B7-H3: The Role of Exon Duplication in Evolution of the Immune System

    Get PDF
    B7-H3, a recently identified B7 family member, has different isoforms in human and mouse. Mouse B7-H3 gene has only one isoform (2IgB7-H3) with two Ig-like domains, whereas human B7-H3 has two isoforms (2IgB7-H3 and 4IgB7-H3). In this study a systematic genomic survey across various species from teleost fishes to mammals revealed that 4IgB7-H3 isoform also appeared in pigs, guinea pigs, cows, dogs, African elephants, pandas, megabats and higher primate animals, which resulted from tandem exon duplication. Further sequence analysis indicated that this duplication generated a new conserved region in the first IgC domain, which might disable 4IgB7-H3 from releasing soluble form, while 2IgB7-H3 presented both membrane and soluble forms. Through three-dimensional (3D) structure modeling and fusion-protein binding assays, we discovered that the duplicated isoform had a different structure and might bind to another potential receptor on activated T cells. In T cell proliferation assay, human 2IgB7-H3 (h2IgB7-H3) and mouse B7-H3 (mB7-H3) both increased T cell proliferation and IL-2, IFN-Ξ³ production, whereas human 4IgB7-H3 (h4IgB7-H3) reduced cytokine production and T cell proliferation compared to control. Furthermore, both h2IgB7-H3 and mB7-H3 upregulated the function of lipopolysacharide (LPS)-activated monocyte in vitro. Taken together, our data implied that during the evolution of vertebrates, B7-H3 exon duplication contributed to the generation of a new 4IgB7-H3 isoform in many mammalian species, which have carried out distinct functions in the immune responses

    MRl of Prostate Cancer Antigen Expression for Diagnosis and lmmunotherapy

    Get PDF
    BACKGROUND: Tumor antigen (TA)-targeted monoclonal antibody (mAb) immunotherapy can be effective for the treatment of a broad range of cancer etiologies; however, these approaches have demonstrated variable clinical efficacy for the treatment of patients with prostate cancer (PCa). An obstacle currently impeding translational progress has been the inability to quantify the mAb dose that reaches the tumor site and binds to the targeted TAs. The coupling of mAb to nanoparticle-based magnetic resonance imaging (MRI) probes should permit in vivo measurement of patient-specific biodistributions; these measurements could facilitate future development of novel dosimetry paradigms wherein mAb dose is titrated to optimize outcomes for individual patients. METHODS: The prostate stem cell antigen (PSCA) is broadly expressed on the surface of prostate cancer (PCa) cells. Anti-human PSCA monoclonal antibodies (mAb 7F5) were bound to Au/Fe(3)O(4) (GoldMag) nanoparticles (mAb 7F5@GoldMag) to serve as PSCA-specific theragnostic MRI probe permitting visualization of mAb biodistribution in vivo. First, the antibody immobilization efficiency of the GoldMag particles and the efficacy for PSCA-specific binding was assessed. Next, PC-3 (prostate cancer with PSCA over-expression) and SMMC-7721 (hepatoma cells without PSCA expression) tumor-bearing mice were injected with mAb 7F5@GoldMag for MRI. MRI probe biodistributions were assessed at increasing time intervals post-infusion; therapy response was evaluated with serial tumor volume measurements. RESULTS: Targeted binding of the mAb 7F5@GoldMag probes to PC-3 cells was verified using optical images and MRI; selective binding was not observed for SMMC-7721 tumors. The immunotherapeutic efficacy of the mAb 7F5@GoldMag in PC-3 tumor-bearing mice was verified with significant inhibition of tumor growth compared to untreated control animals. CONCLUSION: Our promising results suggest the feasibility of using mAb 7F5@GoldMag probes as a novel paradigm for the detection and immunotherapeutic treatment of PCa. We optimistically anticipate that the approaches have the potential to be translated into the clinical settings

    Dissociable Components of Cognitive Control: An Event-Related Potential (ERP) Study of Response Inhibition and Interference Suppression

    Get PDF
    Background: Cognitive control refers to the ability to selectively attend and respond to task-relevant events while resisting interference from distracting stimuli or prepotent automatic responses. The current study aimed to determine whether interference suppression and response inhibition are separable component processes of cognitive control. Methodology/Principal Findings: Fourteen young adults completed a hybrid Go/Nogo flanker task and continuous EEG data were recorded concurrently. The incongruous flanker condition (that required interference suppression) elicited a more centrally distributed topography with a later N2 peak than the Nogo condition (that required response inhibition). Conclusions/Significance: These results provide evidence for the dissociability of interference suppression and response inhibition, indicating that taxonomy of inhibition is warranted with the integration of research evidence from neuroscience
    • …
    corecore