15 research outputs found

    Laser cooling of a diatomic molecule

    Full text link
    It has been roughly three decades since laser cooling techniques produced ultracold atoms, leading to rapid advances in a vast array of fields. Unfortunately laser cooling has not yet been extended to molecules because of their complex internal structure. However, this complexity makes molecules potentially useful for many applications. For example, heteronuclear molecules possess permanent electric dipole moments which lead to long-range, tunable, anisotropic dipole-dipole interactions. The combination of the dipole-dipole interaction and the precise control over molecular degrees of freedom possible at ultracold temperatures make ultracold molecules attractive candidates for use in quantum simulation of condensed matter systems and quantum computation. Also ultracold molecules may provide unique opportunities for studying chemical dynamics and for tests of fundamental symmetries. Here we experimentally demonstrate laser cooling of the molecule strontium monofluoride (SrF). Using an optical cycling scheme requiring only three lasers, we have observed both Sisyphus and Doppler cooling forces which have substantially reduced the transverse temperature of a SrF molecular beam. Currently the only technique for producing ultracold molecules is by binding together ultracold alkali atoms through Feshbach resonance or photoassociation. By contrast, different proposed applications for ultracold molecules require a variety of molecular energy-level structures. Our method provides a new route to ultracold temperatures for molecules. In particular it bridges the gap between ultracold temperatures and the ~1 K temperatures attainable with directly cooled molecules (e.g. cryogenic buffer gas cooling or decelerated supersonic beams). Ultimately our technique should enable the production of large samples of molecules at ultracold temperatures for species that are chemically distinct from bialkalis.Comment: 10 pages, 7 figure

    Laguerre-Gaussian wave propagation in parabolic media

    Full text link
    We report a new set of Laguerre-Gaussian wave-packets that propagate with periodical self-focusing and finite beam width in weakly guiding inhomogeneous media. These wave-packets are solutions to the paraxial form of the wave equation for a medium with parabolic refractive index. The beam width is defined as a solution of the Ermakov equation associated to the harmonic oscillator, so its amplitude is modulated by the strength of the medium inhomogeneity. The conventional Laguerre-Gaussian modes, available for homogenous media, are recovered as a particular case.Comment: 11 pages, 5 figure

    Laser cooling of a nanomechanical oscillator into its quantum ground state

    Get PDF
    A patterned Si nanobeam is formed which supports co-localized acoustic and optical resonances that are coupled via radiation pressure. Starting from a bath temperature of T=20K, the 3.68GHz nanomechanical mode is cooled into its quantum mechanical ground state utilizing optical radiation pressure. The mechanical mode displacement fluctuations, imprinted on the transmitted cooling laser beam, indicate that a final phonon mode occupancy of 0.85 +-0.04 is obtained.Comment: 18 pages, 10 figure

    Frequency-resolved Monte Carlo

    Get PDF
    We adapt the Quantum Monte Carlo method to the cascaded formalism of quantum optics, allowing us to simulate the emission of photons of known energy. Statistical processing of the photon clicks thus collected agrees with the theory of frequency-resolved photon correlations, extending the range of applications based on correlations of photons of prescribed energy, in particular those of a photon-counting character. We apply the technique to autocorrelations of photon streams from a two-level system under coherent and incoherent pumping, including the Mollow triplet regime where we demonstrate the direct manifestation of leapfrog processes in producing an increased rate of two-photon emission events

    The Quantum Measurement of Gravity for Geodesists and Geophysicists

    No full text
    During the past 30 years a great advancement in low-energy physics, particularly interactions of atoms with the electromagnetic field, has been achieved. Quoting the Nobel Prize talk of C. Cohen-Tannoudji, we can say that the development of electronics and laser techniques has allowed to implement a fine manipulation of atoms with photons. In this way, following the theory already worked out in the 50s, physicists have learnt how to cool a sample of atoms at the level of the microkelvin Ă°lk) and, nowadays, even in the range of the nanokelvin (nk). A wealth of important applications has sprung out from this ability of manipulating large samples (N of the order of 10 to the seventh) of cold atoms; among them we mention, regarding the improvement of atomic clocks, the creation of atomic gyroscopes and of atomic gravity meters. This last item is obviously of great interest to geodesists and geophysicists, particularly for potential applications to space geodesy

    Optical manipulation: Trapping ions

    No full text
    The unexpected demonstration of all-optical trapping of ions offers new possibilities in the simulation of quantum spin systems, ultracold chemistry with ions and more

    Observing and the observed

    No full text
    corecore