92 research outputs found

    The effects of symmetry on the dynamics of antigenic variation

    Full text link
    In the studies of dynamics of pathogens and their interactions with a host immune system, an important role is played by the structure of antigenic variants associated with a pathogen. Using the example of a model of antigenic variation in malaria, we show how many of the observed dynamical regimes can be explained in terms of the symmetry of interactions between different antigenic variants. The results of this analysis are quite generic, and have wider implications for understanding the dynamics of immune escape of other parasites, as well as for the dynamics of multi-strain diseases.Comment: 21 pages, 4 figures; J. Math. Biol. (2012), Online Firs

    Academic detailing and adherence to guidelines for Group B streptococci prenatal screening: a randomized controlled trial

    Get PDF
    BACKGROUND: Clinical practice guidelines (CPGs) recommend universal prenatal screening for Group B Streptococcus (GBS) to identify candidates for intrapartum antibiotic prophylaxis to prevent early onset neonatal GBS infection. Interventions to promote physician adherence to these guidelines are imperative. This study examined the effectiveness of academic detailing (AD) of obstetricians, compared with CPG mailshot and no intervention, on the screening of pregnant women for GBS. METHODS: A randomized controlled clinical trial was conducted in the medical cooperative of Porto Alegre, Brazil. All obstetricians who assisted in a delivery covered by private health insurance managed by the cooperative in the 3 months preceding the study (n = 241) were invited to participate. The obstetricians were randomized to three groups: direct mail (DM, n = 76), AD (n = 76) and control (C, n = 89, no intervention). Those in the DM group were sent guidelines on GBS. The AD group received the guidelines and an educational visit detailing the guidelines, which was conducted by a trained physician. Data on obstetrician age, gender, time since graduation, whether patients received GBS screening during pregnancy, and obstetricians who requested screening were collected for all participant obstetricians for 3 months before and after the intervention, using database from the private health insurance information system. RESULTS: Three months post-intervention, the data showed that the proportion of pregnant women screened for GBS was higher in the AD group (25.4%) than in the DM (15.9%) and C (17.7%) groups (P = 0.023). Similar results emerged when the three groups were taken as a cluster (pregnant women and their obstetricians), but the difference was not statistically significant (Poisson regression, P = 0.108). Additionally, when vaginal deliveries were analyzed separately, the proportion screened was higher in the AD group (75%) than in the DM group (41.9%) and the C group (30.4%) (chi-square, P < 0.001). CONCLUSIONS: The results suggest that AD increased the prevalence of GBS screening in pregnant women in this population

    Galactic Effects on Habitability

    Full text link
    The galactic environment has been suspected to influence planetary habitability in many ways. Very metal-poor regions of the Galaxy, or those largely devoid of atoms more massive than H and He, are thought to be unable to form habitable planets. Moreover, if such planets do form, the young system is subjected to close stellar passages while it resides in its stellar birth cluster. Various potential hazards remain after clusters disperse. For instance, central galactic regions may present risks to habitability via nearby supernovae, gamma ray bursts (GRBs), and frequent comet showers. In addition, planets residing within very wide binary star systems are affected by the Galaxy, as local gravitational perturbations from the Galaxy can increase the binary's eccentricity until it destabilizes the planets it hosts. Here we review the most recent work on the main galactic influences over planetary habitability. Although there must be some metallicity limit below which rocky planets cannot form, recent exoplanet surveys show that they form around stars with a very large range of metallicities. Once formed, the probability of star clusters destabilizing planetary systems only becomes high for rare, extremely long-lived clusters. Regarding threats to habitability from supernovae, GRBs, and comet showers, many recent studies suggest that their hazards are more limited than originally thought. Finally, denser regions of the Galaxy enhance the threat that very wide binary companions pose to planetary habitability, but the probability that a very wide binary star disrupts habitability will always be substantially below 100% for any environment. While some Milky Way regions must be more hospitable to habitable planets than others, it is difficult to state that habitable planets are confined to any well-defined region of the Galaxy or that any other particular region of the Galaxy is uninhabitable.Comment: Invited review chapter, accepted for publication in the "Handbook of Exoplanets"; 19 pages; 2 figure

    Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at \sqrt{s}=13 TeV

    Get PDF
    This article documents the muon reconstruction and identification efficiency obtained by the ATLAS experiment for 139 \hbox {fb}^{-1} of pp collision data at \sqrt{s}=13 TeV collected between 2015 and 2018 during Run 2 of the LHC. The increased instantaneous luminosity delivered by the LHC over this period required a reoptimisation of the criteria for the identification of prompt muons. Improved and newly developed algorithms were deployed to preserve high muon identification efficiency with a low misidentification rate and good momentum resolution. The availability of large samples of Z\rightarrow \mu \mu and J/\psi \rightarrow \mu \mu decays, and the minimisation of systematic uncertainties, allows the efficiencies of criteria for muon identification, primary vertex association, and isolation to be measured with an accuracy at the per-mille level in the bulk of the phase space, and up to the percent level in complex kinematic configurations. Excellent performance is achieved over a range of transverse momenta from 3 GeV to several hundred GeV, and across the full muon detector acceptance of |\eta |<2.7

    Measurement of single top-quark production in association with a W boson in the single-lepton channel at \sqrt{s} = 8\,\text {TeV} with the ATLAS detector

    Get PDF
    The production cross-section of a top quark in association with a W boson is measured using proton–proton collisions at \sqrt{s} = 8\,\text {TeV}. The dataset corresponds to an integrated luminosity of 20.2\,\text {fb}^{-1}, and was collected in 2012 by the ATLAS detector at the Large Hadron Collider at CERN. The analysis is performed in the single-lepton channel. Events are selected by requiring one isolated lepton (electron or muon) and at least three jets. A neural network is trained to separate the tW signal from the dominant t{\bar{t}} background. The cross-section is extracted from a binned profile maximum-likelihood fit to a two-dimensional discriminant built from the neural-network output and the invariant mass of the hadronically decaying W boson. The measured cross-section is \sigma _{tW} = 26 \pm 7\,\text {pb}, in good agreement with the Standard Model expectation

    Measurements of Higgs bosons decaying to bottom quarks from vector boson fusion production with the ATLAS experiment at √=13TeV

    Get PDF
    The paper presents a measurement of the Standard Model Higgs Boson decaying to b-quark pairs in the vector boson fusion (VBF) production mode. A sample corresponding to 126 fb−1 of s√=13TeV proton–proton collision data, collected with the ATLAS experiment at the Large Hadron Collider, is analyzed utilizing an adversarial neural network for event classification. The signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model for VBF Higgs production, is measured to be 0.95+0.38−0.36 , corresponding to an observed (expected) significance of 2.6 (2.8) standard deviations from the background only hypothesis. The results are additionally combined with an analysis of Higgs bosons decaying to b-quarks, produced via VBF in association with a photon

    Dijet Resonance Search with Weak Supervision Using root S=13 TeV pp Collisions in the ATLAS Detector

    Get PDF
    This Letter describes a search for narrowly resonant new physics using a machine-learning anomaly detection procedure that does not rely on signal simulations for developing the analysis selection. Weakly supervised learning is used to train classifiers directly on data to enhance potential signals. The targeted topology is dijet events and the features used for machine learning are the masses of the two jets. The resulting analysis is essentially a three-dimensional search A → BC, for mA ∼ OðTeVÞ, mB; mC ∼ Oð100 GeVÞ and B, C are reconstructed as large-radius jets, without paying a penalty associated with a large trials factor in the scan of the masses of the two jets. The full run 2 ffiffi s p ¼ 13 TeV pp collision dataset of 139 fb−1 recorded by the ATLAS detector at the Large Hadron Collider is used for the search. There is no significant evidence of a localized excess in the dijet invariant mass spectrum between 1.8 and 8.2 TeV. Cross-section limits for narrow-width A, B, and C particles vary with mA, mB, and mC. For example, when mA ¼ 3 TeV and mB ≳ 200 GeV, a production cross section between 1 and 5 fb is excluded at 95% confidence level, depending on mC. For certain masses, these limits are up to 10 times more sensitive than those obtained by the inclusive dijet search. These results are complementary to the dedicated searches for the case that B and C are standard model boson
    corecore