8 research outputs found

    Relações entre cátions trocáveis do solo e suas correlações com a qualidade de frutos de melão Soil cationic ratios and its correlation with melon fruit quality

    No full text
    A qualidade dos frutos de melão pode ser prejudicada pelo excesso de nutrientes no solo e pelo desequilíbrio entre eles, causados por adubações excessivas e desuniformes. A amostragem em duas áreas de produção de melão foi realizada para identificar entre relações catiônicas do solo (K:(Ca+Mg), K:Ca, K:Mg, K:CTC, Ca:Mg, Ca:CTC, Mg:CTC, Na:Ca, Na:Mg e PST) aquelas melhor correlacionadas com características de qualidade (espessura de polpa, firmeza da polpa e teor de sólidos solúveis totais). Para tanto se utilizou a estatística descritiva, o coeficiente de correlação de Spearman e a regressão múltipla. As variáveis de qualidade de frutos de melão apresentaram poucas correlações com as relações catiônicas do solo. No Goldex, as melhores correlações foram de K:CTC com espessura de polpa; Ca:CTC e Mg:CTC com firmeza de polpa e K:CTC, K:Ca, K:(Ca+Mg), Na:Ca e Na:Mg com SST, todas positivas. No Orange Flesh, observaram-se correlações apenas de firmeza de polpa com Ca:CTC (positiva), K:Mg, K:Ca, K:(Ca+Mg) e Na:Ca (negativas). No Orange Flesh, através da contribuição para as regressões, identificou-se como mais importantes as relações catiônicas Ca:CTC para espessura (6,2%) e firmeza de polpa (10,9%), e Mg:CTC para o teor de sólidos solúveis totais (1,5%).<br>Melon fruit quality can be reduced by soil nutrient excess and imbalance, both caused by excessive and non uniform fertilizations. Soil samples were taken from two melon fields aiming to identify, among soil cationic ratios (K:(Ca+Mg), K:Ca, K:Mg, K:CTC, Ca:Mg, Ca:CTC, Mg:CTC, Na:Ca, Na:Mg, and ESP), those better correlated with fruit quality characteristics (pulp thickness, pulp firmness and total soluble solids (SST)). Descriptive statistics, Spearman's correlation and multiple regressions were used in the analysis. Melon fruit quality characteristics presented few correlation with soil cationic ratios. In Goldex, the best correlation found were of K:CTC with pulp fruit thickness; Ca:CTC and Mg:CTC with pulp firmness and of K:CTC, K:Ca, K:(Ca+Mg), Na:Ca and Na:Mg with SST, all positive. In Orange Flesh, only pulp firmness showed correlation with Ca:CTC (positive), K:Mg, K:Ca, K:(Ca+Mg) and Na:Ca (negative). On the basis of their contribution to regressions in Orange Flesh, cationic ratios identified as more important were Ca:CTC for pulp fruit thickness (6,2%) and pulp firmness (10,9%), and Mg:CTC for total soluble solids (1,5%)

    3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications

    No full text
    In the past few years, 3D printing technology has witnessed an explosive growth, penetrating various aspects of our lives. Current best-in-class 3D printers can fabricate micrometer scale objects, which has made fabrication of microfluidic devices possible. The highest achievable resolution is already at nanometer scale, which is continuing to drop. Since geometric complexity is not a concern for 3D printing, novel 3D microfluidics and lab-on-a-chip systems that are otherwise impossible to produce with traditional 2D microfabrication technology have started to emerge in recent years. In this review, we first introduce the basics of 3D printing technology for the microfluidic community and then summarize its emerging applications in creating novel microfluidic devices. We foresee widespread utilization of 3D printing for future developments in microfluidic engineering and lab-on-a-chip technology
    corecore