15 research outputs found

    Interannual hydrological variations and ecological phytoplankton patterns in Amazonian floodplain lakes

    No full text
    International audienceAmazonian aquatic environments are complex, and their interaction promotes heterogeneous environments that in turn make it difficult to describe the development of patterns. Amazonian floodplain lakes have different environmental and biological responses in similar water periods due to the interannual variation. We evaluated if the interannual variations in the physical-chemical structure and the phytoplankton community promote environmentally and biologically contrasted conditions between similar hydrological periods. Phytoplankton community structure has differences between periods, but these differences do not necessarily promote dissimilarities. Most of the phytoplankton species belong to the same functional groups. The compositions of species and functional groups between sample units inside lakes are variable and may or may not have significant differences in dissimilarity, but both periods are equally heterogeneous. Beta diversity has shown that the replacement of species and functional groups causes a high level of variation between sites, which maintain a high heterogeneity between periods. These variations have different responses for different scales turning the interpretation of patterns for these environments a problematic task. Hence, scale and inter-annual variability are factors that need to be carefully considered when setting standards to describe the ecological dynamics of floodplain lakes in the Amazonian system

    Larval Connectivity and the International Management of Fisheries

    Get PDF
    Predicting the oceanic dispersal of planktonic larvae that connect scattered marine animal populations is difficult, yet crucial for management of species whose movements transcend international boundaries. Using multi-scale biophysical modeling techniques coupled with empirical estimates of larval behavior and gamete production, we predict and empirically verify spatio-temporal patterns of larval supply and describe the Caribbean-wide pattern of larval connectivity for the Caribbean spiny lobster (Panulirus argus), an iconic coral reef species whose commercial value approaches $1 billion USD annually. Our results provide long sought information needed for international cooperation in the management of marine resources by identifying lobster larval connectivity and dispersal pathways throughout the Caribbean. Moreover, we outline how large-scale fishery management could explicitly recognize metapopulation structure by considering larval transport dynamics and pelagic larval sanctuaries

    Amazon River carbon dioxide outgassing fuelled by wetlands

    No full text
    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle(1). A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems(2). It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream(3,4). Three-quarters of the world's flooded land consists of temporary wetlands(5), but the contribution of these productive ecosystems(6) to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems(1,7). Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains(8). Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters
    corecore