283 research outputs found

    Pentoxifylline associated to hypertonic saline solution attenuates inflammatory process and apoptosis after intestinal ischemia/reperfusion in rats

    Get PDF
    PURPOSE:To evaluate intestinal inflammatory and apoptotic processes after intestinal ischemia/reperfusion injury, modulated by pentoxifylline and hypertonic saline.METHODS:It was allocated into four groups (n=6), 24 male Wistar rats (200 to 250g) and submitted to intestinal ischemia for 40 min and reperfusion for 80 min: IR (did not receive any treatment); HS group (Hypertonic Saline, 4ml/kg-IV); PTX group (Pentoxifylline, 30mg/kg-IV); HS+PTX group (Hypertonic Saline and Pentoxifylline). All animals were heparinized (100U/kg). At the end of reperfusion, ileal fragments were removed and stained on hematoxylin-eosin and histochemical studies for COX-2, Bcl-2 and cleaved caspase-3.RESULTS:The values of sO2 were higher on treated groups at 40 minutes of reperfusion (p=0.0081) and 80 minutes of reperfusion (p=0.0072). Serum lactate values were lower on treated groups after 40 minutes of reperfusion (p=0.0003) and 80 minutes of reperfusion (p=0.0098). Morphologic tissue injuries showed higher grades on IR group versus other groups: HS (p=0.0006), PTX (p=0.0433) and HS+PTX (p=0.0040). The histochemical study showed lesser expression of COX-2 (p=0.0015) and Bcl-2 (p=0.0012) on HS+PTX group. A lower expression of cleaved caspase-3 was demonstrated in PTX (p=0.0090; PTXvsIR).CONCLUSION:The combined use of pentoxifylline and hypertonic saline offers best results on inflammatory and apoptotic inhibitory aspects after intestinal ischemia/reperfusion.São Paulo University Medical SchoolUSP Medical SchoolFederal University of São Paulo Medical SchoolUSP School of MedicineUSP School of Medicine Department of SurgeryUSP Medical School Department of SurgeryUNIFESP, Medical SchoolSciEL

    A Modeling-Derived Hypothesis on Chronicity in Respiratory Diseases: Desensitized Pathogen Recognition Secondary to Hyperactive IRAK/TRAF6 Signaling

    Get PDF
    Several chronic respiratory diseases exhibit hyperactive immune responses in the lung: abundant inflammatory mediators; infiltrating neutrophils, macrophages, lymphocytes and other immune cells; and increased level of proteases. Such diseases include cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD) and severe/neutrophilic asthma. Paradoxically, patients with these diseases are also susceptible to detrimental bacterial infection and colonization. In this paper, we seek to explain how a positive feedback mechanism via IL-8 could lead to desensitization of epithelial cells to pathogen recognition thus perpetuating bacterial colonization and chronic disease states in the lung. Such insight was obtained from mathematical modeling of the IRAK/TRAF6 signaling module, and is consistent with existing clinical evidence. The potential implications for targeted treatment regimes for these persistent respiratory diseases are explored
    • …
    corecore