18 research outputs found

    Fabry disease in children and the effects of enzyme replacement treatment

    Get PDF
    Fabry disease is a rare, X-linked inborn error of glycosphingolipid catabolism caused by a deficiency in the activity of the lysosomal enzyme, α-galactosidase A. In affected patients, the enzyme substrate, globotriaosylceramide (Gb3), accumulates in cells of various tissues and organs. Lysosomal accumulation of Gb3 begins in utero, and signs and symptoms of Fabry disease emerge in childhood and adolescence. The earliest presenting symptoms are typically neuropathic pain and gastrointestinal problems, which can have a substantial impact on health-related quality of life. Life-threatening major organ involvement is rare in young patients, but signs of kidney dysfunction (e.g., proteinuria), left ventricular hypertrophy, and stroke have been reported in children. There are two enzyme preparations for therapy: agalsidase alfa and beta. In two clinical trials of enzyme replacement therapy (ERT) with agalsidase alfa, including 37 children, boys demonstrated reductions in plasma Gb3 levels, and both boys and girls reported reductions in neuropathic pain and in the use of neuropathic pain medications. Heart rate variability, which is reduced in boys with Fabry disease, was statistically significantly improved with 6 months of agalsidase alfa treatment. In a single clinical study of agalsidase beta in children (n =16), skin Gb3 deposits and plasma Gb3 levels were reduced in boys. Differences exist in the administration and the safety profile of these two enzyme formulations. Follow-up of these cohorts and additional studies will be necessary to fully evaluate long-term efficacy of ERT in children with Fabry disease

    Oral squamous cell cancer: early detection and the role of alcohol and smoking

    Get PDF
    Objective: Oral squamous cell carcinoma has a remarkable incidence worldwide and a fairly onerous prognosis, encouraging further research on factors that might modify disease outcome. Data sources: A web-based search for all types of articles published was initiated using Medline/Pub Med, with the key words such as oral cancer, alcohol consumption, genetic polymorphisms, tobacco smoking and prevention. The search was restricted to articles published in English, with no publication date restriction (last update 2010). Review Methods: In this review article, we approach the factors for a cytologic diagnosis during OSCC development and the markers used in modern diagnostic technologies as well. We also reviewed available studies of the combined effects of alcohol drinking and genetic polymorphisms on alcohol-related cancer risk. Results: The interaction of smoking and alcohol significantly increases the risk for aero-digestive cancers. The interaction between smoking and alcohol consumption seems to be responsible for a significant amount of disease. Conclusion: Published scientific data show promising pathways for the future development of more effective prognosis. There is a clear need for new prognostic indicators, which could be used in diagnostics and, therefore a better selection of the most effective treatment can be achieved

    Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: first single-centre, prospective, crossover study in patients

    No full text
    Maple syrup urine disease (MSUD) is a rare metabolic disorder with a worldwide prevalence of 1 in every 185,000 live births. However, certain populations display a significant overexpression of the disorder where incidence is reported to be 1 in every 52, 541 new-borns. The first-line therapy for MSUD involves a strict dietary leucine restriction and oral supplementation of isoleucine and valine. The dose administered to patients requires strict tailoring according to age, weight and blood levels. In current clinical practice, however, practitioners still have to prepare extemporaneous formulations due to the lack of suitable oral treatments for MSUD. Herein we evaluate for the first time the use of 3D printing in a hospital setting for the preparation of personalised therapies with the aim of improving safety and acceptability to isoleucine supplementation in paediatric patients suffering from MSUD. The study was a single-centre, prospective crossover experimental study. Four paediatric patients with MSUD (aged 3-16 years) were treated at the Clinic University Hospital in Santiago de Compostela, Spain which is a MSUD reference hospital in Europe. The primary investigation was to evaluate isoleucine blood levels after six months treatment with two types of formulations; conventional capsule prepared by manual compounding and personalised chewable formulations prepared by automated 3D printing. A secondary investigation was to evaluate patient acceptability of 3D printed formulations prepared with different flavours and colours. Isoleucine blood levels in the patients were well controlled using both types of formulations, however, the 3D printed therapy showed mean levels closer to the target value and with less variability (200 - 400µM). The 3D printed formulations were well accepted by the patients regarding flavour and colour. The study demonstrates for the first time that 3D printing offers a feasible, rapid and automated approach to prepare oral tailored-dose therapies in a hospital setting. 3D printing has shown to be an effective manufacturing technology in producing chewable isoleucine printlets as a treatment of MSUD with good acceptability

    Uptake of CeO2 nanoparticles and its effect on growth of Medicago arborea in vitro plantlets

    No full text
    The present study analyzes some effects of nanoCeO2 particles on the growth of in vitro plantlets of Medicago arborea when the nanoceria was added to the culture medium. Various concentrations of nano-CeO2 and bulk ceric oxide particles in suspension form were introduced to the agar culture medium to compare the effects of nanoceria versus ceric oxide bulk material. Germination rate and shoot dry weight were not affected by the addition of ceric oxide to the culture media. Furthermore, no effects were observed on chlorophyll content (single-photon avalanche diode (SPAD) measurements) due to the presence of either nano- or microCeO2 in the culture medium. When low concentrations of nanoceria were added to the medium, the number of trifoliate leaves and the root length increased but the root dry weight decreased. Also the values of maximum photochemical efficiency of PSII (Fv/Fm) showed a significant decrease. Darkadapted minimum fluorescence (F0) significantly increased in the presence of 200 mg L−1 nanoceria and 400 mg L−1 bulk material. Root tissues were more sensitive to nanoceria than were the shoots at lower concentrations of nanoceria. A stress effect was observed on M. arborea plantlets due to cerium uptake
    corecore