3,046 research outputs found

    Validation of a spectrophotometric method for quantification of xanthone in biodegradable nanoparticles

    Get PDF
    Xanthone has been incorporated for the first time in nanoparticles of poly(D,L-lactide-co-glycolide) (PLGA). For this purpose the estimation of xanthone content in the nanoparticles is a crucial tool for guaranteeing the reliability of the results. Thus, a simple spectrophotometric method was validated according to USP25 and ICH guidelines for its specificity, linearity, accuracy and precision. The method was found to be specific for xanthone in the presence of nanoparticle excipients. The calibration curve was linear over the concentration range of 0.5 to 4.0 mug/mL (r > 0.999). Recovery of xanthone from nanoparticles ranged from 86.5 to 95.9%. Repeatability (intra-assay precision) and intermediate precision were found to be acceptable with relative standard deviations values (RSD) ranging from 0.3 to 3.0% and from 1.4 to 3.1%, respectively. The method was found to be suitable for the evaluation of xanthone content in nanoparticles of PLGA

    Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone

    Get PDF
    The aim of the present work was to develop and characterize two different nanosystems, nanospheres and nanocapsules, containing either xanthone (XAN) or 3-methoxyxanthone (3-MeOXAN), with the final goal of improving the delivery of these poorly water-soluble compounds. The xanthones-loaded nanospheres (nanomatrix systems) and nanocapsules (nanoreservoir systems), made of poly(DL-lactide-co-glycolide) (PLGA), were prepared by the solvent displacement technique. The following characteristics of nanoparticle formulations were determined: particle size and morphology, zeta potential, incorporation efficiency, thermal behaviour, in vitro release profiles and physical stability at 4 degrees C. The nanospheres had a mean diameter 77%) were higher than those corresponding to nanospheres for both xanthones. The release of 3-MeOXAN from nanocapsules was similar to that observed for the correspondent nanoemulsion, indicating that drug release is mainly governed by its partition between the oil core and the external aqueous medium. In contrast, the release of XAN from nanocapsules was significantly slower than from the nanoemulsion, a behaviour that suggests an interaction of the drug with the polymer. Nanocapsule formulations exhibited good physical stability at 4 degrees C during a 4-month period for XAN and during a 3-month period for 3-MeOXAN

    Improvement of the inhibitory effect of xanthones on NO production by encapsulation in PLGA nanocapsules

    Get PDF
    For the first time the inhibitory effect of xanthone and 3-methoxyxanthone on nitric oxide (NO) production by IFN-gamma/LPS activated J774 macrophage cell line is reported. A remarkable improvement of this effect promoted by encapsulation of these compounds in nanocapsules of Poly (DL-lactide-co-glycolide) (PLGA) is also demonstrated. A weak inhibitory effect of 3.6% on NO production by activated macrophages was observed for xanthone at the highest studied concentration (100 mu M). This effect was slightly higher for 3-methoxyxanthone at the same concentration, producing a reduction of 16.5% on NO production. In contrast, equivalent concentrations of xanthone and 3-methoxyxanthone incorporated in nanocapsules produced a significant decrease on NO production of 91.8 and 80.0%, respectively. Empty nanocapsules also exhibited a slight NO inhibitory activity, which may be due to the presence of soybean lecithin in the composition of the nanosystems. The viability of the macrophages was not affected either by free or nanoencapsulated xanthones. Fluorescence microscopy analysis confirmed that a phagocytic process was involved in the macrophage uptake of xanthone- and 3-methoxyxanthone-loaded PLGA nanocapsules. Phagocytosis might be the main mechanism responsible for the enhancement of the intracellular delivery of both compounds and consequently for the improvement of their biological effect

    Studies on the interaction of the carbohydrate binding module 3 from the Clostridium thermocellum CipA scaffolding protein with cellulose and paper fibres

    Get PDF
    The adsorption of a carbohydrate binding module (CBM3) from the Clostridium thermocellum scaffolding protein (CipA) to cellulose was analysed in this work. The effect of CBM-PEG on the drainability of E. globulus and P. sylvestris pulps and on the physical properties of the respective papersheets was also studied. The CBM binding to cellulose is often described as “irreversible”, but this classification does not fully characterize this interaction. Indeed, the results obtained demonstrate that, although the adsorption on cellulose is rather stable, CBM inter-fibre mobility may be observed. The results also showed that the CBM-PEG conjugate improves the drainability of E. globulus and P. sylvestris pulps without affecting the physical properties of the papersheets.This research was supported by Fundacao para a Ciencia e a Tecnologia under grant POCTI/BIO/45356/2002

    A validated HPLC method for the assay of xanthone and 3-methoxyxanthone in PLGA nanocapsules

    Get PDF
    This work relates the development and validation of a simple reversed-phase high-performance liquid chromatographic (HPLC) method for the analysis of xanthone (XAN) and 3-methoxyxanthone (3-MeOXAN) in poly(D,L-lactide-co-glycolide) (PLGA) nanocapsule formulations. This method does not require any complex sample extraction procedure. Chromatographic separation is made with a reversed-phase C18 column, using methanol-water (90:10, v/v) as a mobile phase at a flow rate of 1 mL/min. Identification is made by UV detection at 237 nm. The isocratic system operates at ambient temperature and requires 7 min of chromatographic time. The developed method is statistically validated according to United States Pharmacopoeia 25 and International Conference on Harmonization guidelines for its specificity, linearity, accuracy, and precision. The assay method proposed in this study is specific for XAN and 3-MeOXAN in the presence of nanocapsule excipients. Diode-array analyses confirm the homogeneity of XAN and 3-MeOXAN peaks in stressed conditions. Standard curves are linear (r > 0.999) over the concentration range of 0.4-2.5 and 1.0-5.8 g/mL for XAN and 3-MeOXAN, respectively. Recovery from nanocapsules ranges from 99.6% to 102.8% for XAN and 98.8% to 102.4% for 3-MeOXAN. Repeatability (intra-assay precision) is acceptable with relative standard deviation values of 1.2% for XAN and 0.3% for 3-MeOXAN

    Target cells of human adenovirus type 12 in subtentorial brain tissue of newborn mice. I. Cyto-histomorphologic and immunofluorescent microscopic studies In vivo

    Get PDF
    Human adenovirus type 12 (Ad 12) was inoculated through subtentorial route into inbred newborn mice (C3H/BifB/Ki), and sequential changes of the brain and tumor induction were examined by histological and immunofluorescent methods. Two days after virus inoculation, Ad 12 specific tumor antigen (fluorescent T-antigen) appeared in the cells of ependymal and subventricular matrix layers, choroid plexuses and leptomeninges in the subtentorial as well as the supratentorial brains. After 10 days, these fluorescent positive cells decreased gradually in number but still remained focally beneath the ependyma. Sixty days later, early tumor nodules were detected in the same regions in which remained the fluorescent cells. After 107 days, neurological signs and well-developed tumors were noted in 25 of 63 (30.1%) mice examined. In the cerebellum, both of T-antigens and tumors were limited around the IVth ventricle, but not in the granular layers. Histomorphologically, the tumors were of primitive neuroectodermal origin and consisted of the cells resembling immature matrix cells in the subventricular zone. These findings strongly suggest that the virus has a selective affinity to the remaining matrix cells, but not to cerebellar granular cells, at least, in newborn mice.</p

    Identifying critically important vascular access outcomes for trials in haemodialysis : an international survey with patients, caregivers and health professionals

    Get PDF
    BACKGROUND: Vascular access outcomes reported across haemodialysis (HD) trials are numerous, heterogeneous and not always relevant to patients and clinicians. This study aimed to identify critically important vascular access outcomes. METHOD: Outcomes derived from a systematic review, multi-disciplinary expert panel and patient input were included in a multilanguage online survey. Participants rated the absolute importance of outcomes using a 9-point Likert scale (7-9 being critically important). The relative importance was determined by a best-worst scale using multinomial logistic regression. Open text responses were analysed thematically. RESULTS: The survey was completed by 873 participants [224 (26%) patients/caregivers and 649 (74%) health professionals] from 58 countries. Vascular access function was considered the most important outcome (mean score 7.8 for patients and caregivers/8.5 for health professionals, with 85%/95% rating it critically important, and top ranked on best-worst scale), followed by infection (mean 7.4/8.2, 79%/92% rating it critically important, second rank on best-worst scale). Health professionals rated all outcomes of equal or higher importance than patients/caregivers, except for aneurysms. We identified six themes: necessity for HD, applicability across vascular access types, frequency and severity of debilitation, minimizing the risk of hospitalization and death, optimizing technical competence and adherence to best practice and direct impact on appearance and lifestyle. CONCLUSIONS: Vascular access function was the most critically important outcome among patients/caregivers and health professionals. Consistent reporting of this outcome across trials in HD will strengthen their value in supporting vascular access practice and shared decision making in patients requiring HD

    The application of Bonelike® Poro as a synthetic bone substitute for the management of critical-sized bone defects - A comparative approach to the autograft technique - A preliminary study

    Get PDF
    The effective treatment of non-unions and critical-sized defects remains a challenge in the orthopedic field. From a tissue engineering perspective, this issue can be addressed through the application bioactive matrixes to support bone regeneration, such as Bonelike®, as opposed to the widespread autologous grafting technique. An improved formulation of Bonelike® Poro, was assessed as a synthetic bone substitute in an ovine model for critical-sized bone defects. Bone regeneration was assessed after 5 months of recovery through macro and microscopic analysis of the healing features of the defect sites. Both the application of natural bone graft or Bonelike® Poro resulted in bridging of the defects margins. Untreated defect remained as fibrous non-unions at the end of the study period. The characteristics of the newly formed bone and its integration with the host tissue were assessed through histomorphometric and histological analysis, which demonstrated Bonelike® Poro to result in improved healing of the defects. The group treated with synthetic biomaterial presented bone bridges of increased thickness and bone features that more closely resembled the native spongeous and cortical bone. The application of Bonelike® Poro enabled the regeneration of critical-sized lesions and performed comparably to the autograph technique, validating its octeoconductive and osteointegrative potential for clinical application as a therapeutic strategy in human and veterinary orthopedics.This research was supported by Projects PEst-OE/AGR/UI0211/2011 from FCT , and COMPETE 2020 , from ANI – Projetos ID&T Empresas em Copromoção , by the project “insitu.Biomas – Reinvent biomanufacturing systems by using an usability approach for in situ clinic temporary implants fabrication” with the reference POCI-01-0247-FEDER-017771 , by the project “Print-on-Organs – Engineering bioinks and processes for direct printing on organs” with the reference POCI-01-0247-FEDER-033877 , and by the project “Bone2Move - Development of ‘in vivo’ experimental techniques and modelling methodologies for the evaluation of 4D scaffolds for bone defect in sheep model: an integrative research approach” with the reference POCI-01-0145-FEDER-031146 . Mariana Vieira Branquinho ( SFRH/BD/146172/2019 ), Ana Catarina Sousa ( SFRH/BD/146689/2019 ), and Rui Damásio Alvites ( SFRH/BD/116118/2016 ), acknowledge FCT , for financial support. This research was supported by Projects PEst-OE/AGR/UI0211/2011 from FCT, and COMPETE 2020, from ANI ? Projetos ID&T Empresas em Copromo??o, by the project ?insitu.Biomas ? Reinvent biomanufacturing systems by using an usability approach for in situ clinic temporary implants fabrication? with the reference POCI-01-0247-FEDER-017771, by the project ?Print-on-Organs ? Engineering bioinks and processes for direct printing on organs? with the reference POCI-01-0247-FEDER-033877, and by the project ?Bone2Move - Development of ?in vivo? experimental techniques and modelling methodologies for the evaluation of 4D scaffolds for bone defect in sheep model: an integrative research approach? with the reference POCI-01-0145-FEDER-031146. Mariana Vieira Branquinho (SFRH/BD/146172/2019), Ana Catarina Sousa (SFRH/BD/146689/2019), and Rui Dam?sio Alvites (SFRH/BD/116118/2016), acknowledge FCT, for financial support

    Potential clinical implications of CD4+CD26high T cells for nivolumab treated melanoma patients

    Get PDF
    Background Nivolumab is an anti-PD1 antibody that has dramatically improved metastatic melanoma patients’ outcomes. Nevertheless, many patients are resistant to PD-1 inhibition, occasionally experiencing severe of-target immune toxicity. In addition, no robust and reproducible biomarkers have yet been validated to identify the correct selection of patients who will beneft from anti-PD-1 treatment avoiding unwanted side efects. However, the strength of CD26 expression on CD4+ T lymphocytes permits the characterization of three subtypes with variable degrees of responsiveness to tumors, suggesting that the presence of CD26-expressing T cells in patients might be a marker of responsiveness to PD-1-based therapies. Methods The frequency distribution of peripheral blood CD26-expressing cells was investigated employing multiparametric fow cytometry in 69 metastatic melanoma patients along with clinical characteristics and blood count parameters at baseline (W0) and compared to 20 age- and sex-matched healthy controls. Percentages of baseline CD4+CD26high T cells were correlated with the outcome after nivolumab treatment. In addition, the frequency of CD4+CD26high T cells at W0 was compared with those obtained after 12 weeks (W1) of therapy in a sub-cohort of 33 patients. Results Circulating CD4+CD26high T cells were signifcantly reduced in melanoma patients compared to healthy subjects (p=0.001). In addition, a signifcant association was observed between a low baseline percentage of CD4+CD26high T cells (<7.3%) and clinical outcomes, measured as overall survival (p=0.010) and progression-free survival (p=0.014). Moreover, patients with clinical beneft from nivolumab therapy had signifcantly higher frequencies of circulating CD4+CD26high T cells than patients with non-clinical beneft (p=0.004) at 12 months. Also, a higher pre-treatment proportion of circulating CD4+CD26high T cells was correlated with Disease Control Rate (p=0.014) and best Overall Response Rate (p=0.009) at 12 months. Interestingly, after 12 weeks (W1) of nivolumab treatment, percentages of CD4+CD26high T cells were signifcantly higher in comparison with the frequencies measured at W0 (p<0.0001), aligning the cell counts with the ranges seen in the blood of healthy subjects
    corecore