129 research outputs found

    Renal artery stenosis-when to screen, what to stent?

    Get PDF
    Renal artery stensosis (RAS) continues to be a problem for clinicians, with no clear consensus on how to investigate and assess the clinical significance of stenotic lesions and manage the findings. RAS caused by fibromuscular dysplasia is probably commoner than previously appreciated, should be actively looked for in younger hypertensive patients and can be managed successfully with angioplasty. Atheromatous RAS is associated with increased incidence of cardiovascular events and increased cardiovascular mortality, and is likely to be seen with increasing frequency. Evidence from large clinical trials has led clinicians away from recommending interventional revascularisation towards aggressive medical management. There is now interest in looking more closely at patient selection for intervention, with focus on intervening only in patients with the highest-risk presentations such as flash pulmonary oedema, rapidly declining renal function and severe resistant hypertension. The potential benefits in terms of improving hard cardiovascular outcomes may outweigh the risks of intervention in this group, and further research is needed

    Interplay of Substrate Retention and Export Signals in Endoplasmic Reticulum Quality Control

    Get PDF
    BACKGROUND: Endoplasmic reticulum (ER) quality control mechanisms are part of a comprehensive system to manage cell stress. The flux of molecules is monitored to retain folding intermediates and target misfolded molecules to ER-associated degradation (ERAD) pathways. The mechanisms of sorting remain unclear. While some proteins are retained statically, the classical model substrate CPY* is found in COPII transport vesicles, suggesting a retrieval mechanism for retention. However, its management can be even more dynamic. If ERAD is saturated under stress, excess CPY* traffics to the vacuole for degradation. These observations suggest that misfolded proteins might display different signals for their management. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the existence of a functional ER exit signal in the pro-domain of CPY*. Compromising its integrity causes ER retention through exclusion from COPII vesicles. The signal co-exists with other signals used for retention and degradation. Physiologically, the export signal is important for stress tolerance. Disabling it converts a benign protein into one that is intrinsically cytotoxic. CONCLUSIONS/SIGNIFICANCE: These data reveal the remarkable interplay between opposing signals embedded within ERAD substrate molecules and the mechanisms that decipher them. Our findings demonstrate the diversity of mechanisms deployed for protein quality control and maintenance of protein homeostasis

    Mapping the prion protein distribution in marsupials: insights from comparing opossum with mouse CNS

    Get PDF
    The cellular form of the prion protein (PrP(C)) is a sialoglycoprotein widely expressed in the central nervous system (CNS) of mammalian species during neurodevelopment and in adulthood. The location of the protein in the CNS may play a role in the susceptibility of a species to fatal prion diseases, which are also known as the transmissible spongiform encephalopathies (TSEs). To date, little is known about PrP(C) distribution in marsupial mammals, for which no naturally occurring prion diseases have been reported. To extend our understanding of varying PrP(C) expression profiles in different mammals we carried out a detailed expression analysis of PrP(C) distribution along the neurodevelopment of the metatherian South American short-tailed opossum (Monodelphis domestica). We detected lower levels of PrP(C) in white matter fiber bundles of opossum CNS compared to mouse CNS. This result is consistent with a possible role for PrP(C) in the distinct neurodevelopment and neurocircuitry found in marsupials compared to other mammalian species

    Emergency department spirometric volume and base deficit delineate risk for torso injury in stable patients

    Get PDF
    BACKGROUND: We sought to determine torso injury rates and sensitivities associated with fluid-positive abdominal ultrasound, metabolic acidosis (increased base deficit and lactate), and impaired pulmonary physiology (decreased spirometric volume and PaO(2)/FiO(2)). METHODS: Level I trauma center prospective pilot and post-pilot study (2000–2001) of stable patients. Increased base deficit was < 0.0 in ethanol-negative and ≤ -3.0 in ethanol-positive patients. Increased lactate was > 2.5 mmol/L in ethanol-negative and ≥ 3.0 mmol/L in ethanol-positive patients. Decreased PaO(2)/FiO(2 )was < 350 and decreased spirometric volume was < 1.8 L. RESULTS: Of 215 patients, 66 (30.7%) had a torso injury (abdominal/pelvic injury n = 35 and/or thoracic injury n = 43). Glasgow Coma Scale score was 14.8 ± 0.5 (13–15). Torso injury rates and sensitivities were: abdominal ultrasound negative and normal base deficit, lactate, PaO(2)/FiO(2), and spirometric volume – 0.0% & 0.0%; normal base deficit and normal spirometric volume – 4.2% & 4.5%; chest/abdominal soft tissue injury – 37.8% & 47.0%; increased lactate – 39.7% & 47.0%; increased base deficit – 41.3% & 75.8%; increased base deficit and/or decreased spirometric volume – 43.8% & 95.5%; decreased PaO(2)/FiO(2 )– 48.9% & 33.3%; positive abdominal ultrasound – 62.5% & 7.6%; decreased spirometric volume – 73.4% & 71.2%; increased base deficit and decreased spirometric volume – 82.9% & 51.5%. CONCLUSIONS: Trauma patients with normal base deficit and spirometric volume are unlikely to have a torso injury. Patients with increased base deficit or lactate, decreased spirometric volume, decreased PaO(2)/FiO(2), or positive FAST have substantial risk for torso injury. Increased base deficit and/or decreased spirometric volume are highly sensitive for torso injury. Base deficit and spirometric volume values are readily available and increase or decrease the suspicion for torso injury

    Profiling Early Lung Immune Responses in the Mouse Model of Tuberculosis

    Get PDF
    Tuberculosis (TB) is caused by the intracellular bacteria Mycobacterium tuberculosis, and kills more than 1.5 million people every year worldwide. Immunity to TB is associated with the accumulation of IFNγ-producing T helper cell type 1 (Th1) in the lungs, activation of M.tuberculosis-infected macrophages and control of bacterial growth. However, very little is known regarding the early immune responses that mediate accumulation of activated Th1 cells in the M.tuberculosis-infected lungs. To define the induction of early immune mediators in the M.tuberculosis-infected lung, we performed mRNA profiling studies and characterized immune cells in M.tuberculosis-infected lungs at early stages of infection in the mouse model. Our data show that induction of mRNAs involved in the recognition of pathogens, expression of inflammatory cytokines, activation of APCs and generation of Th1 responses occurs between day 15 and day 21 post infection. The induction of these mRNAs coincides with cellular accumulation of Th1 cells and activation of myeloid cells in M.tuberculosis-infected lungs. Strikingly, we show the induction of mRNAs associated with Gr1+ cells, namely neutrophils and inflammatory monocytes, takes place on day 12 and coincides with cellular accumulation of Gr1+ cells in M.tuberculosis-infected lungs. Interestingly, in vivo depletion of Gr1+ neutrophils between days 10–15 results in decreased accumulation of Th1 cells on day 21 in M.tuberculosis-infected lungs without impacting overall protective outcomes. These data suggest that the recruitment of Gr1+ neutrophils is an early event that leads to production of chemokines that regulate the accumulation of Th1 cells in the M.tuberculosis-infected lungs

    Enhanced Inflammatory Potential of CD4(+) T-Cells That Lack Proteasome Immunosubunit Expression, in a T-Cell Transfer-Based Colitis Model

    Get PDF
    Proteasomes play a fundamental role in intracellular protein degradation and therewith regulate a variety of cellular processes. Exposure of cells to (pro)inflammatory cytokines upregulates the expression of three inducible catalytic proteasome subunits, the immunosubunits, which incorporate into newly assembled proteasome complexes and alter the catalytic activity of the cellular proteasome population. Single gene-deficient mice lacking one of the three immunosubunits are resistant to dextran sulfate sodium (DSS)-induced colitis development and, likewise, inhibition of one single immunosubunit protects mice against the development of DSS-induced colitis. The observed diminished disease susceptibility has been attributed to altered cytokine production and CD4+ T-cell differentiation in the absence of immunosubunits. To further test whether the catalytic activity conferred by immunosubunits plays an essential role in CD4+ T-cell function and to distinguish between the role of immunosubunits in effector T-cells versus inflamed tissue, we used a T-cell transfer-induced colitis model. Naïve wt or immunosubunit-deficient CD4+ T-cells were adoptively transferred into RAG1-/- and immunosubunit-deficient RAG1-/- mice and colitis development was determined six weeks later. While immunosubunit expression in recipient mice had no effect on colitis development, transferred immunosubunit-deficient T- cells were more potent in inducing colitis and produced more proinflammatory IL17 than wt T-cells. Taken together, our data show that modifications in proteasome-mediated proteolysis in T-cells, conferred by lack of immunosubunit incorporation, do not attenuate but enhance CD4+ T-cell-induced inflammation

    Systemic versus localized coagulation activation contributing to organ failure in critically ill patients

    Get PDF
    In the pathogenesis of sepsis, inflammation and coagulation play a pivotal role. Increasing evidence points to an extensive cross-talk between these two systems, whereby inflammation not only leads to activation of coagulation but coagulation also considerably affects inflammatory activity. The intricate relationship between inflammation and coagulation may not only be relevant for vascular atherothrombotic disease in general but has in certain clinical settings considerable consequences, for example in the pathogenesis of microvascular failure and subsequent multiple organ failure, as a result of severe infection and the associated systemic inflammatory response. Molecular pathways that contribute to inflammation-induced activation of coagulation have been precisely identified. Pro-inflammatory cytokines and other mediators are capable of activating the coagulation system and downregulating important physiological anticoagulant pathways. Activation of the coagulation system and ensuing thrombin generation is dependent on an interleukin-6-induced expression of tissue factor on activated mononuclear cells and endothelial cells and is insufficiently counteracted by physiological anticoagulant mechanisms and endogenous fibrinolysis. Interestingly, apart from the overall systemic responses, a differential local response in various vascular beds related to specific organs may occur

    Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies

    Get PDF
    corecore