124 research outputs found

    Acellular Pertussis Booster in Adolescents Induces Th1 and Memory CD8+ T Cell Immune Response

    Get PDF
    In a number of countries, whole cell pertussis vaccines (wcP) were replaced by acellular vaccines (aP) due to an improved reactogenicity profile. Pertussis immunization leads to specific antibody production with the help of CD4+ T cells. In earlier studies in infants and young children, wcP vaccines selectively induced a Th1 dominated immune response, whereas aP vaccines led to a Th2 biased response. To obtain data on Th1 or Th2 dominance of the immune response in adolescents receiving an aP booster immunization after a wcP or aP primary immunization, we analyzed the concentration of Th1 (IL-2, TNF-α, INF-γ) and Th2 (IL-4, IL-5, IL-10) cytokines in supernatants of lymphocyte cultures specifically stimulated with pertussis antigens. We also investigated the presence of cytotoxic T cell responses against the facultative intracellular bacterium Bordetella pertussis by quantifying pertussis-specific CD8+ T cell activation following the aP booster immunization. Here we show that the adolescent aP booster vaccination predominantly leads to a Th1 immune response based on IFNgamma secretion upon stimulation with pertussis antigen, irrespective of a prior whole cell or acellular primary vaccination. The vaccination also induces an increase in peripheral CD8+CD69+ activated pertussis-specific memory T cells four weeks after vaccination. The Th1 bias of this immune response could play a role for the decreased local reactogenicity of this adolescent aP booster immunization when compared to the preceding childhood acellular pertussis booster. Pertussis-specific CD8+ memory T cells may contribute to protection against clinical pertussis

    Assessment and comparative analysis of a rapid diagnostic test (Tubex®) for the diagnosis of typhoid fever among hospitalized children in rural Tanzania

    Get PDF
    Background: Typhoid fever remains a significant health problem in many developing countries. A rapid test with a performance comparable to that of blood culture would be highly useful. A rapid diagnostic test for typhoid fever, Tubex®, is commercially available that uses particle separation to detect immunoglobulin M directed towards Salmonella Typhi O9 lipopolysaccharide in sera.Methods: We assessed the sensitivity and specificity of the Tubex test among Tanzanian children hospitalized with febrile illness using blood culture as gold standard. Evaluation was done considering blood culture confirmed S. Typhi with non-typhi salmonella (NTS) and non - salmonella isolates as controls as well as with non-salmonella isolates only.Results: Of 139 samples tested with Tubex, 33 were positive for S. Typhi in blood culture, 49 were culture-confirmed NTS infections, and 57 were other non-salmonella infections. Thirteen hemolyzed samples were excluded. Using all non - S. Typhi isolates as controls, we showed a sensitivity of 79% and a specificity of 89%. When the analysis was repeated excluding NTS from the pool of controls we showed a sensitivity of 79% and a specificity of 97%. There was no significant difference in the test performance using the two different control groups (p > 0.05).Conclusion: This first evaluation of the Tubex test in an African setting showed a similar performance to those seen in some Asian settings. Comparison with the earlier results of a Widal test using the same samples showed no significant difference (p > 0.05) for any of the performance indicators, irrespective of the applied control group

    Evaluation of the Widal tube agglutination test for the diagnosis of typhoid fever among children admitted to a rural hdospital in Tanzania and a comparison with previous studies

    Get PDF
    BACKGROUND: The diagnosis of typhoid fever is confirmed by culture of Salmonella enterica serotype Typhi (S. typhi). However, a more rapid, simpler, and cheaper diagnostic method would be very useful especially in developing countries. The Widal test is widely used in Africa but little information exists about its reliability. METHODS: We assessed the performance of the Widal tube agglutination test among febrile hospitalized Tanzanian children. We calculated the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of various anti-TH and -TO titers using culture-confirmed typhoid fever cases as the "true positives" and all other febrile children with blood culture negative for S. typhi as the "true negatives." RESULTS: We found that 16 (1%) of 1,680 children had culture-proven typhoid fever. A single anti-TH titer of 1:80 and higher was the optimal indicator of typhoid fever. This had a sensitivity of 75%, specificity of 98%, NPV of 100%, but PPV was only 26%. We compared our main findings with those from previous studies. CONCLUSION: Among febrile hospitalized Tanzanian children with a low prevalence of typhoid fever, a Widal titer of > or = 1:80 performed well in terms of sensitivity, specificity, and NPV. However a test with improved PPV that is similarly easy to apply and cost-efficient is desirable

    Abnormal increase in urinary aquaporin-2 excretion in response to hypertonic saline in essential hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dysregulation of the expression/shuttling of the aquaporin-2 water channel (AQP2) and the epithelial sodium channel (ENaC) in renal collecting duct principal cells has been found in animal models of hypertension. We tested whether a similar dysregulation exists in essential hypertension.</p> <p>Methods</p> <p>We measured urinary excretion of AQP2 and ENaC β-subunit corrected for creatinine (u-AQP2<sub>CR</sub>, u-ENaC<sub>β-CR</sub>), prostaglandin E2 (u-PGE<sub>2</sub>) and cyclic AMP (u-cAMP), fractional sodium excretion (FE<sub>Na</sub>), free water clearance (C<sub>H2O</sub>), as well as plasma concentrations of vasopressin (AVP), renin (PRC), angiotensin II (Ang II), aldosterone (Aldo), and atrial and brain natriuretic peptide (ANP, BNP) in 21 patients with essential hypertension and 20 normotensive controls during 24-h urine collection (baseline), and after hypertonic saline infusion on a 4-day high sodium (HS) diet (300 mmol sodium/day) and a 4-day low sodium (LS) diet (30 mmol sodium/day).</p> <p>Results</p> <p>At baseline, no differences in u-AQP2<sub>CR </sub>or u-ENaC<sub>β-CR </sub>were measured between patients and controls. U-AQP2<sub>CR </sub>increased significantly more after saline in patients than controls, whereas u-ENaC<sub>β-CR </sub>increased similarly. The saline caused exaggerated natriuretic increases in patients during HS intake. Neither baseline levels of u-PGE<sub>2</sub>, u-cAMP, AVP, PRC, Ang II, Aldo, ANP, and BNP nor changes after saline could explain the abnormal u-AQP2<sub>CR </sub>response.</p> <p>Conclusions</p> <p>No differences were found in u-AQP2<sub>CR </sub>and u-ENaC<sub>β-CR </sub>between patients and controls at baseline. However, in response to saline, u-AQP2<sub>CR </sub>was abnormally increased in patients, whereas the u-ENaC<sub>β-CR </sub>response was normal. The mechanism behind the abnormal AQP2 regulation is not clarified, but it does not seem to be AVP-dependent.</p> <p>Clinicaltrial.gov identifier</p> <p><a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=00345124">NCT00345124</a>.</p

    Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans

    Get PDF
    Maintenance of fluid homeostasis is critical to establishing and maintaining normal physiology. The landmark discovery of membrane water channels (aquaporins; AQPs) ushered in a new area in osmoregulatory biology that has drawn from and contributed to diverse branches of biology, from molecular biology and genomics to systems biology and evolution, and from microbial and plant biology to animal and translational physiology. As a result, the study of AQPs provides a unique and integrated backdrop for exploring the relationships between genes and genome systems, the regulation of gene expression, and the physiologic consequences of genetic variation. The wide species distribution of AQP family members and the evolutionary conservation of the family indicate that the control of membrane water flux is a critical biological process. AQP function and regulation is proving to be central to many of the pathways involved in individual physiologic systems in both mammals and anurans. In mammals, AQPs are essential to normal secretory and absorptive functions of the eye, lung, salivary gland, sweat glands, gastrointestinal tract, and kidney. In urinary, respiratory, and gastrointestinal systems, AQPs are required for proper urine concentration, fluid reabsorption, and glandular secretions. In anurans, AQPs are important in mediating physiologic responses to changes in the external environment, including those that occur during metamorphosis and adaptation from an aquatic to terrestrial environment and thermal acclimation in anticipation of freezing. Therefore, an understanding of AQP function and regulation is an important aspect of an integrated approach to basic biological research

    Variation in the COVID-19 infection-fatality ratio by age, time, and geography during the pre-vaccine era: a systematic analysis

    Get PDF
    Background The infection-fatality ratio (IFR) is a metric that quantifies the likelihood of an individual dying once infected with a pathogen. Understanding the determinants of IFR variation for COVID-19, the disease caused by the SARS-CoV-2 virus, has direct implications for mitigation efforts with respect to clinical practice, non-pharmaceutical interventions, and the prioritisation of risk groups for targeted vaccine delivery. The IFR is also a crucial parameter in COVID-19 dynamic transmission models, providing a way to convert a population's mortality rate into an estimate of infections.Methods We estimated age-specific and all-age IFR by matching seroprevalence surveys to total COVID-19 mortality rates in a population. The term total COVID-19 mortality refers to an estimate of the total number of deaths directly attributable to COVID-19. After applying exclusion criteria to 5131 seroprevalence surveys, the IFR analyses were informed by 2073 all-age surveys and 718 age-specific surveys (3012 age-specific observations). When seroprevalence was reported by age group, we split total COVID-19 mortality into corresponding age groups using a Bayesian hierarchical model to characterise the non-linear age pattern of reported deaths for a given location. To remove the impact of vaccines on the estimated IFR age pattern, we excluded age-specific observations of seroprevalence and deaths that occurred after vaccines were introduced in a location. We estimated age-specific IFR with a non-linear meta-regression and used the resulting age pattern to standardise all-age IFR observations to the global age distribution. All IFR observations were adjusted for baseline and waning antibody-test sensitivity. We then modelled age-standardised IFR as a function of time, geography, and an ensemble of 100 of the top-performing covariate sets. The covariates included seven clinical predictors (eg, age-standardised obesity prevalence) and two measures of health system performance. Final estimates for 190 countries and territories, as well as subnational locations in 11 countries and territories, were obtained by predicting age-standardised IFR conditional on covariates and reversing the age standardisation.Findings We report IFR estimates for April 15, 2020, to January 1, 2021, the period before the introduction of vaccines and widespread evolution of variants. We found substantial heterogeneity in the IFR by age, location, and time. Age-specific IFR estimates form a J shape, with the lowest IFR occurring at age 7 years (0-0023%, 95% uncertainty interval [UI] 0-0015-0-0039) and increasing exponentially through ages 30 years (0-0573%, 0-0418-0-0870), 60 years (1-0035%, 0-7002-1-5727), and 90 years (20-3292%, 14-6888-28-9754). The countries with the highest IFR on July 15, 2020, were Portugal (2-085%, 0-946-4-395), Monaco (1-778%, 1-265-2-915), Japan (1-750%, 1-302-2-690), Spain (1-710%, 0-991-2-718), and Greece (1-637%, 1-155-2-678). All-age IFR varied by a factor of more than 30 among 190 countries and territories.After age standardisation, the countries with the highest IFR on July 15, 2020, were Peru (0-911%, 0-636-1-538), Portugal (0-850%, 0-386-1-793), Oman (0-762%, 0-381-1-399), Spain (0-751%, 0-435-1-193), and Mexico (0-717%, 0-426-1-404). Subnational locations with high IFRs also included hotspots in the UK and southern and eastern states of the USA. Sub-Saharan African countries and Asian countries generally had the lowest all-age and age-standardised IFRs. Population age structure accounted for 74% of logit-scale variation in IFRs estimated for 39 in-sample countries on July 15, 2020. A post-hoc analysis showed that high rates of transmission in the care home population might account for higher IFRs in some locations. Among all countries and territories, we found that the median IFR decreased from 0-466% (interquartile range 0-223-0-840) to 0-314% (0-143-0-551) between April 15, 2020, and Jan 1, 2021.Interpretation Estimating the IFR for global populations helps to identify relative vulnerabilities to COVID-19. Information about how IFR varies by age, time, and location informs clinical practice and non-pharmaceutical interventions like physical distancing measures, and underpins vaccine risk stratification. IFR and mortality risk form a J shape with respect to age, which previous research, such as that by Glynn and Moss in 2020, has identified to be a common pattern among infectious diseases. Understanding the experience of a population with COVID-19 mortality requires consideration for local factors; IFRs varied by a factor of more than 30 among 190 countries and territories in this analysis. In particular, the presence of elevated age-standardised IFRs in countries with well resourced health-care systems indicates that factors beyond health-care capacity are important. Potential extenuating circumstances include outbreaks among care home residents, variable burdens of severe cases, and the population prevalence of comorbid conditions that increase the severity of COVID-19 disease. During the pre-vaccine period, the estimated 33% decrease in median IFR over 8 months suggests that treatment for COVID-19 has improved over time. Estimating IFR for the pre-vaccine era provides an important baseline for describing the progression of COVID-19 mortality patterns.Funding Bill &amp; Melinda Gates Foundation, J Stanton, T Gillespie, and J and E Nordstrom Copyright (c) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license

    Macro-level Modeling of the Response of C. elegans Reproduction to Chronic Heat Stress

    Get PDF
    A major goal of systems biology is to understand how organism-level behavior arises from a myriad of molecular interactions. Often this involves complex sets of rules describing interactions among a large number of components. As an alternative, we have developed a simple, macro-level model to describe how chronic temperature stress affects reproduction in C. elegans. Our approach uses fundamental engineering principles, together with a limited set of experimentally derived facts, and provides quantitatively accurate predictions of performance under a range of physiologically relevant conditions. We generated detailed time-resolved experimental data to evaluate the ability of our model to describe the dynamics of C. elegans reproduction. We find considerable heterogeneity in responses of individual animals to heat stress, which can be understood as modulation of a few processes and may represent a strategy for coping with the ever-changing environment. Our experimental results and model provide quantitative insight into the breakdown of a robust biological system under stress and suggest, surprisingly, that the behavior of complex biological systems may be determined by a small number of key components

    ATP-binding cassette (ABC) transporters in normal and pathological lung

    Get PDF
    ATP-binding cassette (ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) are highly expressed in bronchial epithelium. This review aims to give new insights in the possible functions of ABC molecules in the lung in view of their expression in different cell types. Furthermore, their role in protection against noxious compounds, e.g. air pollutants and cigarette smoke components, will be discussed as well as the (mal)function in normal and pathological lung. Several pulmonary drugs are substrates for ABC transporters and therefore, the delivery of these drugs to the site of action may be highly dependent on the presence and activity of many ABC transporters in several cell types. Three ABC transporters are known to play an important role in lung functioning. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause cystic fibrosis, and mutations in ABCA1 and ABCA3 are responsible for respectively Tangier disease and fatal surfactant deficiency. The role of altered function of ABC transporters in highly prevalent pulmonary diseases such as asthma or chronic obstructive pulmonary disease (COPD) have hardly been investigated so far. We especially focused on polymorphisms, knock-out mice models and in vitro results of pulmonary research. Insight in the function of ABC transporters in the lung may open new ways to facilitate treatment of lung diseases
    corecore