2,479 research outputs found
Collaborative working within UK NHS secondary care and across sectors for COPD and the impact of peer review: qualitative findings from the UK National COPD Resources and Outcomes Project
The main NCROP study was funded by the Health
Foundationâs Engaging with Quality Initiative (EwQI).
The researchers are grateful to GlaxoSmithKline UK
Ltd, Boehringer Ingelheim and AstraZeneca UK Ltd
for a combined Educational Grant that has funded this
research evaluation
Hospitalized poisonings after renal transplantation in the United States
BACKGROUND: The national incidence of and risk factors for hospitalized poisonings in renal transplant recipients has not been reported. METHODS: Historical cohort study of 39,628 renal transplant recipients in the United States Renal Data System between 1 July 1994 and 30 June 1998. Associations with time to hospitalizations for a primary diagnosis of poisonings (ICD-9 codes 960.x-989.x) within three years after renal transplant were assessed by Cox Regression. RESULTS: The incidence of hospitalized poisonings was 2.3 patients per 1000 person years. The most frequent causes of poisonings were immunosuppressive agents (25.3%), analgesics/antipyretics (14.1%), psychotropic agents (10.0%), and insulin/antidiabetic agents (7.1%). In Cox Regression analysis, low body mass index (BMI, <21.6 vs. >28.3 kg/m(2), adjusted hazard ratio (AHR), 3.02, 95% CI, 1.45â6.28, and allograft rejection, AHR 1.83, 95% CI, 1.15â2.89, were the only factors independently associated with hospitalized poisonings. Hospitalized poisonings were independently associated with increased mortality (AHR, 1.54, 95% CI 1.22â1.92, p = 0.002). CONCLUSIONS: Hospitalized poisonings were associated with increased mortality after renal transplantation. However, almost all reported poisonings in renal transplant recipients were due to the use of prescribed medications. Allograft rejection and low BMI were the only independent risk factors for poisonings identified in this population
Gravitational Wave Detection by Interferometry (Ground and Space)
Significant progress has been made in recent years on the development of
gravitational wave detectors. Sources such as coalescing compact binary
systems, neutron stars in low-mass X-ray binaries, stellar collapses and
pulsars are all possible candidates for detection. The most promising design of
gravitational wave detector uses test masses a long distance apart and freely
suspended as pendulums on Earth or in drag-free craft in space. The main theme
of this review is a discussion of the mechanical and optical principles used in
the various long baseline systems in operation around the world - LIGO (USA),
Virgo (Italy/France), TAMA300 and LCGT (Japan), and GEO600 (Germany/U.K.) - and
in LISA, a proposed space-borne interferometer. A review of recent science runs
from the current generation of ground-based detectors will be discussed, in
addition to highlighting the astrophysical results gained thus far. Looking to
the future, the major upgrades to LIGO (Advanced LIGO), Virgo (Advanced Virgo),
LCGT and GEO600 (GEO-HF) will be completed over the coming years, which will
create a network of detectors with significantly improved sensitivity required
to detect gravitational waves. Beyond this, the concept and design of possible
future "third generation" gravitational wave detectors, such as the Einstein
Telescope (ET), will be discussed.Comment: Published in Living Reviews in Relativit
Strong and Tunable Nonlinear Optomechanical Coupling in a Low-Loss System
A major goal in optomechanics is to observe and control quantum behavior in a
system consisting of a mechanical resonator coupled to an optical cavity. Work
towards this goal has focused on increasing the strength of the coupling
between the mechanical and optical degrees of freedom; however, the form of
this coupling is crucial in determining which phenomena can be observed in such
a system. Here we demonstrate that avoided crossings in the spectrum of an
optical cavity containing a flexible dielectric membrane allow us to realize
several different forms of the optomechanical coupling. These include cavity
detunings that are (to lowest order) linear, quadratic, or quartic in the
membrane's displacement, and a cavity finesse that is linear in (or independent
of) the membrane's displacement. All these couplings are realized in a single
device with extremely low optical loss and can be tuned over a wide range in
situ; in particular, we find that the quadratic coupling can be increased three
orders of magnitude beyond previous devices. As a result of these advances, the
device presented here should be capable of demonstrating the quantization of
the membrane's mechanical energy.Comment: 12 pages, 4 figures, 1 tabl
Radiation-pressure cooling and optomechanical instability of a micro-mirror
Recent experimental progress in table-top experiments or gravitational-wave
interferometers has enlightened the unique displacement sensitivity offered by
optical interferometry. As the mirrors move in response to radiation pressure,
higher power operation, though crucial for further sensitivity enhancement,
will however increase quantum effects of radiation pressure, or even jeopardize
the stable operation of the detuned cavities proposed for next-generation
interferometers. The appearance of such optomechanical instabilities is the
result of the nonlinear interplay between the motion of the mirrors and the
optical field dynamics. In a detuned cavity indeed, the displacements of the
mirror are coupled to intensity fluctuations, which modifies the effective
dynamics of the mirror. Such "optical spring" effects have already been
demonstrated on the mechanical damping of an electromagnetic waveguide with a
moving wall, on the resonance frequency of a specially designed flexure
oscillator, and through the optomechanical instability of a silica
micro-toroidal resonator. We present here an experiment where a
micro-mechanical resonator is used as a mirror in a very high-finesse optical
cavity and its displacements monitored with an unprecedented sensitivity. By
detuning the cavity, we have observed a drastic cooling of the micro-resonator
by intracavity radiation pressure, down to an effective temperature of 10 K. We
have also obtained an efficient heating for an opposite detuning, up to the
observation of a radiation-pressure induced instability of the resonator.
Further experimental progress and cryogenic operation may lead to the
experimental observation of the quantum ground state of a mechanical resonator,
either by passive or active cooling techniques
Physics, Astrophysics and Cosmology with Gravitational Waves
Gravitational wave detectors are already operating at interesting sensitivity
levels, and they have an upgrade path that should result in secure detections
by 2014. We review the physics of gravitational waves, how they interact with
detectors (bars and interferometers), and how these detectors operate. We study
the most likely sources of gravitational waves and review the data analysis
methods that are used to extract their signals from detector noise. Then we
consider the consequences of gravitational wave detections and observations for
physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version
<http://www.livingreviews.org/lrr-2009-2
Cooling a nanomechanical resonator with quantum back-action
Quantum mechanics demands that the act of measurement must affect the
measured object. When a linear amplifier is used to continuously monitor the
position of an object, the Heisenberg uncertainty relationship requires that
the object be driven by force impulses, called back-action. Here we measure the
back-action of a superconducting single-electron transistor (SSET) on a
radiofrequency nanomechanical resonator. The conductance of the SSET, which is
capacitively coupled to the resonator, provides a sensitive probe of the
latter's position;back-action effects manifest themselves as an effective
thermal bath, the properties of which depend sensitively on SSET bias
conditions. Surprisingly, when the SSET is biased near a transport resonance,
we observe cooling of the nanomechanical mode from 550mK to 300mK-- an effect
that is analogous to laser cooling in atomic physics. Our measurements have
implications for nanomechanical readout of quantum information devices and the
limits of ultrasensitive force microscopy (such as single-nuclear-spin magnetic
resonance force microscopy). Furthermore, we anticipate the use of these
backaction effects to prepare ultracold and quantum states of mechanical
structures, which would not be accessible with existing technology.Comment: 28 pages, 7 figures; accepted for publication in Natur
Generation and physiological roles of linear ubiquitin chains
Ubiquitination now ranks with phosphorylation as one of the best-studied post-translational modifications of proteins with broad regulatory roles across all of biology. Ubiquitination usually involves the addition of ubiquitin chains to target protein molecules, and these may be of eight different types, seven of which involve the linkage of one of the seven internal lysine (K) residues in one ubiquitin molecule to the carboxy-terminal diglycine of the next. In the eighth, the so-called linear ubiquitin chains, the linkage is between the amino-terminal amino group of methionine on a ubiquitin that is conjugated with a target protein and the carboxy-terminal carboxy group of the incoming ubiquitin. Physiological roles are well established for K48-linked chains, which are essential for signaling proteasomal degradation of proteins, and for K63-linked chains, which play a part in recruitment of DNA repair enzymes, cell signaling and endocytosis. We focus here on linear ubiquitin chains, how they are assembled, and how three different avenues of research have indicated physiological roles for linear ubiquitination in innate and adaptive immunity and suppression of inflammation
Nanomechanical motion measured with precision beyond the standard quantum limit
Nanomechanical oscillators are at the heart of ultrasensitive detectors of
force, mass and motion. As these detectors progress to even better sensitivity,
they will encounter measurement limits imposed by the laws of quantum
mechanics. For example, if the imprecision of a measurement of an oscillator's
position is pushed below the standard quantum limit (SQL), quantum mechanics
demands that the motion of the oscillator be perturbed by an amount larger than
the SQL. Minimizing this quantum backaction noise and nonfundamental, or
technical, noise requires an information efficient measurement. Here we
integrate a microwave cavity optomechanical system and a nearly noiseless
amplifier into an interferometer to achieve an imprecision below the SQL. As
the microwave interferometer is naturally operated at cryogenic temperatures,
the thermal motion of the oscillator is minimized, yielding an excellent force
detector with a sensitivity of 0.51 aN/rt(Hz). In addition, the demonstrated
efficient measurement is a critical step towards entangling mechanical
oscillators with other quantum systems.Comment: 5 pages, 4 figure
- âŠ