605 research outputs found

    New Protocols and Lower Bound for Quantum Secret Sharing with Graph States

    Full text link
    We introduce a new family of quantum secret sharing protocols with limited quantum resources which extends the protocols proposed by Markham and Sanders and by Broadbent, Chouha, and Tapp. Parametrized by a graph G and a subset of its vertices A, the protocol consists in: (i) encoding the quantum secret into the corresponding graph state by acting on the qubits in A; (ii) use a classical encoding to ensure the existence of a threshold. These new protocols realize ((k,n)) quantum secret sharing i.e., any set of at least k players among n can reconstruct the quantum secret, whereas any set of less than k players has no information about the secret. In the particular case where the secret is encoded on all the qubits, we explore the values of k for which there exists a graph such that the corresponding protocol realizes a ((k,n)) secret sharing. We show that for any threshold k> n-n^{0.68} there exists a graph allowing a ((k,n)) protocol. On the other hand, we prove that for any k< 79n/156 there is no graph G allowing a ((k,n)) protocol. As a consequence there exists n_0 such that the protocols introduced by Markham and Sanders admit no threshold k when the secret is encoded on all the qubits and n>n_0

    Quantum Speedup by Quantum Annealing

    Full text link
    We study the glued-trees problem of Childs et. al. in the adiabatic model of quantum computing and provide an annealing schedule to solve an oracular problem exponentially faster than classically possible. The Hamiltonians involved in the quantum annealing do not suffer from the so-called sign problem. Unlike the typical scenario, our schedule is efficient even though the minimum energy gap of the Hamiltonians is exponentially small in the problem size. We discuss generalizations based on initial-state randomization to avoid some slowdowns in adiabatic quantum computing due to small gaps.Comment: 7 page

    The Real Combination Problem : Panpsychism, Micro-Subjects, and Emergence

    Get PDF
    Panpsychism harbors an unresolved tension, the seriousness of which has yet to be fully appreciated. I capture this tension as a dilemma, and offer panpsychists advice on how to resolve it. The dilemma, briefly, is as follows. Panpsychists are committed to the perspicuous explanation of macro-mentality in terms of micro-mentality. But panpsychists take the micro-material realm to feature not just mental properties, but also micro-subjects to whom these properties belong. Yet it is impossible to explain the constitution of a macro-subject (like one of us) in terms of the assembly of micro-subjects, for, I show, subjects cannot combine. Therefore the panpsychist explanatory project is derailed by the insistence that the world’s ultimate material constituents (ultimates) are subjects of experience. The panpsychist faces a choice of abandoning her explanatory project, or recanting the claim that the ultimates are subjects. This is the dilemma. I argue that the latter option is to be preferred. This needn’t constitute a wholesale abandonment of panpsychism, however, since panpsychists can maintain that the ultimates possess phenomenal qualities, despite not being subjects of those qualities. This proposal requires us to make sense of phenomenal qualities existing independently of experiencing subjects, a challenge I tackle in the penultimate section. The position eventually reached is a form of neutral monism, so another way to express the overall argument is to say that, keeping true to their philosophical motivations, panpsychists should really be neutral monists.Peer reviewedFinal Accepted Versio

    Extending scientific computing system with structural quantum programming capabilities

    Full text link
    We present a basic high-level structures used for developing quantum programming languages. The presented structures are commonly used in many existing quantum programming languages and we use quantum pseudo-code based on QCL quantum programming language to describe them. We also present the implementation of introduced structures in GNU Octave language for scientific computing. Procedures used in the implementation are available as a package quantum-octave, providing a library of functions, which facilitates the simulation of quantum computing. This package allows also to incorporate high-level programming concepts into the simulation in GNU Octave and Matlab. As such it connects features unique for high-level quantum programming languages, with the full palette of efficient computational routines commonly available in modern scientific computing systems. To present the major features of the described package we provide the implementation of selected quantum algorithms. We also show how quantum errors can be taken into account during the simulation of quantum algorithms using quantum-octave package. This is possible thanks to the ability to operate on density matrices

    Four Photon Entanglement from Down Conversion

    Get PDF
    Double-pair emission from type-II parametric down conversion results in a highly entangled 4-photon state. Due to interference, which is similar to bunching from thermal emission, this state is not simply a product of two pairs. The observation of this state can be achieved by splitting the two emission modes at beam splitters and subsequent detection of a photon in each output. Here we describe the features of this state and give a Bell theorem for a 4-photon test of local realistic hidden variable theories.Comment: 5 pages, 1 figure, submitted to PR

    Hiding bits in Bell states

    Get PDF
    We present a scheme for hiding bits in Bell states that is secure even when the sharers Alice and Bob are allowed to carry out local quantum operations and classical communication. We prove that the information that Alice and Bob can gain about a hidden bit is exponentially small in nn, the number of qubits in each share, and can be made arbitrarily small for hiding multiple bits. We indicate an alternative efficient low-entanglement method for preparing the shared quantum states. We discuss how our scheme can be implemented using present-day quantum optics.Comment: 4 pages RevTex, 1 figure, various small changes and additional paragraph on optics implementatio

    The Spitzer Space Telescope Mission

    Full text link
    The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected and the projected cryogenic lifetime is in excess of 5 years. This paper summarizes the on-orbit scientific, technical and operational performance of Spitzer. Subsequent papers in this special issue describe the Spitzer instruments in detail and highlight many of the exciting scientific results obtained during the first six months of the Spitzer mission.Comment: Accepted for publication in the Astrophyscial Journal Supplement Spitzer Special Issue, 22 pages, 3 figures. Higher resolution versions of the figures are available at http://ssc.spitzer.caltech.edu/pubs/journal2004.htm

    Characterizing two solar-type Kepler subgiants with asteroseismology: KIC10920273 and KIC11395018

    Full text link
    Determining fundamental properties of stars through stellar modeling has improved substantially due to recent advances in asteroseismology. Thanks to the unprecedented data quality obtained by space missions, particularly CoRoT and Kepler, invaluable information is extracted from the high-precision stellar oscillation frequencies, which provide very strong constraints on possible stellar models for a given set of classical observations. In this work, we have characterized two relatively faint stars, KIC10920273 and KIC11395018, using oscillation data from Kepler photometry and atmospheric constraints from ground-based spectroscopy. Both stars have very similar atmospheric properties; however, using the individual frequencies extracted from the Kepler data, we have determined quite distinct global properties, with increased precision compared to that of earlier results. We found that both stars have left the main sequence and characterized them as follows: KIC10920273 is a one-solar-mass star (M=1.00 +/- 0.04 M_sun), but much older than our Sun (t=7.12 +/- 0.47 Gyr), while KIC11395018 is significantly more massive than the Sun (M=1.27 +/- 0.04 M_sun) with an age close to that of the Sun (t=4.57 +/- 0.23 Gyr). We confirm that the high lithium abundance reported for these stars should not be considered to represent young ages, as we precisely determined them to be evolved subgiants. We discuss the use of surface lithium abundance, rotation and activity relations as potential age diagnostics.Comment: 12 pages, 3 figures, 5 tables. Accepted by Ap

    Toward scalable quantum computation with cavity QED systems

    Get PDF
    We propose a scheme for quantum computing using high-Q cavities in which the qubits are represented by single cavity modes restricted in the space spanned by the two lowest Fock states. We show that single qubit operations and universal multiple qubit gates can be implemented using atoms sequentially crossing the cavities.Comment: 14 pages, 8 figure

    Quantum key distribution via quantum encryption

    Full text link
    A quantum key distribution protocol based on quantum encryption is presented in this Brief Report. In this protocol, the previously shared Einstein-Podolsky-Rosen pairs act as the quantum key to encode and decode the classical cryptography key. The quantum key is reusable and the eavesdropper cannot elicit any information from the particle Alice sends to Bob. The concept of quantum encryption is also discussed.Comment: 4 Pages, No Figure. Final version to appear in PR
    • 

    corecore