6,392 research outputs found

    A Quantitative Non-radial Oscillation Model for the Subpulses in PSR B0943+10

    Get PDF
    In this paper, we analyze time series measurements of PSR B0943+10 and fit them with a non-radial oscillation model. The model we apply was first developed for total intensity measurements in an earlier paper, and expanded to encompass linear polarization in a companion paper to this one. We use PSR B0943+10 for the initial tests of our model because it has a simple geometry, it has been exhaustively studied in the literature, and its behavior is well-documented. As prelude to quantitative fitting, we have reanalyzed previously published archival data of PSR B0943+10 and uncovered subtle but significant behavior that is difficult to explain in the framework of the drifting spark model. Our fits of a non-radial oscillation model are able to successfully reproduce the observed behavior in this pulsar.Comment: 45 pages, 16 figures, accepted Ap

    Dutch corporate liquidity mangement: New evidence on aggregation

    Get PDF
    In this paper we investigate Dutch corporate liquidity management in general, and target adjustment behaviour in particular. To this purpose, we use a simple error correction model of corporate liquidity holdings applied to firm-level data for the period 1977-1997. We confirm the existence of long-run liquidity targets at the firm level. We also find that changes in liquidity holdings are driven by short-run shocks as well as the urge to converge towards targeted liquidity levels. The rate of target convergence is higher when we include more firm-specific information in the target. This result supports the idea that increased precision in defining liquidity targets associates with a faster observed rate of target convergence. It also suggests that the slow speeds of adjustment obtained in many macro studies on money demand are artefacts of aggregation bias.corporate liquidity demand, precautionary liquidity

    Superconducting cascade electron refrigerator

    Full text link
    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance and limitations of such a device

    The chemistry of La on the Si(001) surface

    Full text link
    This paper reports state-of-the-art electronic structure calculations of La adsorption on the Si(001) surface. We predict La chains in the low coverage limit, which condense in a stable phase at a coverage of 1/5 monolayer. At 1/3 monolayer we predict a chemically rather inert, stable phase. La changes its oxidation state from La(3+) at lower coverages to La(2+) at coverages beyond 1/3 monolayer. In the latter oxidation state, one electron resides in a state with a considerable contribution from La-d and f states.Comment: 10 pages, 13 figures, 3 table

    A New Solution for the Dispersive Element in Astronomical Spectrographs

    Get PDF
    We present a new solution for the dispersive element in astronomical spectrographs that, in many cases, can provide an upgrade path to enhance the spectral resolution of existing moderate-resolution reflection-grating spectrographs. We demonstrate that in the case of LRIS-R at the Keck 1 Telescope, a spectral resolution of 18,000 can be achieved with reasonable throughput under good seeing conditions

    High Resolution Spectroscopy of the Pulsating White Dwarf G29-38

    Get PDF
    We present the analysis of time-resolved, high resolution spectra of the cool white dwarf pulsator, G29-38. From measuring the Doppler shifts of the H-alpha core, we detect velocity changes as large as 16.5 km/s and conclude that they are due to the horizontal motions associated with the g-mode pulsations on the star. We detect seven pulsation modes from the velocity time-series and identify the same modes in the flux variations. We discuss the properties of these modes and use the advantage of having both velocity and flux measurements of the pulsations to test the convective driving theory proposed for DAV stars. Our data show limited agreement with the expected relationships between the amplitude and phases of the velocity and flux modes. Unexpectedly, the velocity curve shows evidence for harmonic distortion, in the form of a peak in the Fourier transform whose frequency is the exact sum of the two largest frequencies. Combination frequencies are a characteristic feature of the Fourier transforms of light curves of G29-38, but before now have not been detected in the velocities, nor does published theory predict that they should exist. We compare our velocity combination frequency to combination frequencies found in the analysis of light curves of G29-38, and discuss what might account for the existence of velocity combinations with the properties we observe. We also use our high-resolution spectra to determine if either rotation or pulsation can explain the truncated shape observed for the DAV star's line core. We are able to eliminate both mechanisms: the average spectrum does not fit the rotationally broadened model and the time-series of spectra provides proof that the pulsations do not significantly truncate the line.Comment: 24 pages, 9 figures, Accepted for publication in ApJ (June

    A Pulsational Model for the Orthogonal Polarization Modes in Radio Pulsars

    Get PDF
    In an earlier paper, we introduced a model for pulsars in which non-radial oscillations of high spherical degree (\el) aligned to the magnetic axis of a spinning neutron star were able to reproduce subpulses like those observed in single-pulse measurements of pulsar intensity. The model did not address polarization, which is an integral part of pulsar emission. Observations show that many pulsars emit radio waves that appear to be the superposition of two linearly polarized emission modes with orthogonal polarization angles. In this paper, we extend our model to incorporate linear polarization. As before, we propose that pulsational displacements of stellar material modulate the pulsar emission, but now we apply this modulation to a linearly-polarized mode of emission, as might be produced by curvature radiation. We further introduce a second polarization mode, orthogonal to the first, that is modulated by pulsational velocities. We combine these modes in superposition to model the observed Stokes parameters in radio pulsars.Comment: 19 pages, 4 figures accepted Ap

    Optical inter-site spin transfer probed by energy and spin-resolved transient absorption spectroscopy

    Get PDF
    Optically driven spin transport is the fastest and most efficient process to manipulate macroscopic magnetization as it does not rely on secondary mechanisms to dissipate angular momentum. In the present work, we show that such an optical inter-site spin transfer (OISTR) from Pt to Co emerges as a dominant mechanism governing the ultrafast magnetization dynamics of a CoPt alloy. To demonstrate this, we perform a joint theoretical and experimental investigation to determine the transient changes of the helicity dependent absorption in the extreme ultraviolet spectral range. We show that the helicity dependent absorption is directly related to changes of the transient spin-split density of states, allowing us to link the origin of OISTR to the available minority states above the Fermi level. This makes OISTR a general phenomenon in optical manipulation of multi-component magnetic systems. Optically driven spin transfer is the fastest process to manipulate magnetism. Here, the authors show that this process emerges as the dominant mechanism in femtosecond spin dynamics enabling to the engineering of functional magnetic systems for future all optical technologies

    Chen-Ruan cohomology of ADE singularities

    Full text link
    We study Ruan's \textit{cohomological crepant resolution conjecture} for orbifolds with transversal ADE singularities. In the AnA_n-case we compute both the Chen-Ruan cohomology ring HCR([Y])H^*_{\rm CR}([Y]) and the quantum corrected cohomology ring H(Z)(q1,...,qn)H^*(Z)(q_1,...,q_n). The former is achieved in general, the later up to some additional, technical assumptions. We construct an explicit isomorphism between HCR([Y])H^*_{\rm CR}([Y]) and H(Z)(1)H^*(Z)(-1) in the A1A_1-case, verifying Ruan's conjecture. In the AnA_n-case, the family H(Z)(q1,...,qn)H^*(Z)(q_1,...,q_n) is not defined for q1=...=qn=1q_1=...=q_n=-1. This implies that the conjecture should be slightly modified. We propose a new conjecture in the AnA_n-case which we prove in the A2A_2-case by constructing an explicit isomorphism.Comment: This is a short version of my Ph.D. Thesis math.AG/0510528. Version 2: chapters 2,3,4 and 5 has been rewritten using the language of groupoids; a link with the classical McKay correpondence is given. International Journal of Mathematics (to appear
    corecore