105 research outputs found

    SIOUX project: a simultaneous multiband camera for exoplanet atmospheres studies

    Get PDF
    The exoplanet revolution is well underway. The last decade has seen order-of-magnitude increases in the number of known planets beyond the Solar system. Detailed characterization of exoplanetary atmospheres provide the best means for distinguishing the makeup of their outer layers, and the only hope for understanding the interplay between initial composition chemistry, temperature-pressure atmospheric profiles, dynamics and circulation. While pioneering work on the observational side has produced the first important detections of atmospheric molecules for the class of transiting exoplanets, important limitations are still present due to the lack of sys- tematic, repeated measurements with optimized instrumentation at both visible (VIS) and near-infrared (NIR) wavelengths. It is thus of fundamental importance to explore quantitatively possible avenues for improvements. In this paper we report initial results of a feasibility study for the prototype of a versatile multi-band imaging system for very high-precision differential photometry that exploits the choice of specifically selected narrow-band filters and novel ideas for the execution of simultaneous VIS and NIR measurements. Starting from the fundamental system requirements driven by the science case at hand, we describe a set of three opto-mechanical solutions for the instrument prototype: 1) a radial distribution of the optical flux using dichroic filters for the wavelength separation and narrow-band filters or liquid crystal filters for the observations; 2) a tree distribution of the optical flux (implying 2 separate foci), with the same technique used for the beam separation and filtering; 3) an exotic solution consisting of the study of a complete optical system (i.e. a brand new telescope) that exploits the chromatic errors of a reflecting surface for directing the different wavelengths at different foci

    Design, synthesis and preliminary pharmacological evaluation of new imidazolinonesas L-DOPA prodrugs

    Get PDF
    L-DOPA, the immediate biological precursor of dopamine, is still considered the drug of choice in the treatment of Parkinson's disease. However, therapy with L-DOPA is associated with a number of acute problems. With the aim to increase the bioavailability after oral administration, we designed a multi-protected L-DOPA prodrugs able to release the drug by both spontaneous chemical or enzyme catalyzed hydrolysis. The new compounds have been synthesized and preliminarily evaluated for their water solubility, log P, chemical stability, and enzymatic stability. The results indicate that the incorporation of the amino acidic moiety of L-DOPA into an imidazoline-4-one ring provides prodrugs sufficiently stable to potentially cross unchanged the acidic environment of the stomach, and to be absorbed from the intestine. They also might be able to release L-DOPA in human plasma after enzymatic hydrolysis. The ability of prodrugs 6a-b to increase basal levels of striatal DA, and influence brain neurochemistry associated with dopaminergic activity following oral administration, as well as the radical-scavenging activity against DPPH for compounds 6a-b and 15a are also reported

    New Constraints on the Future Evaporation of the Young Exoplanets in the V1298 Tau System

    Get PDF
    Transiting planets at young ages are key targets for improving our understanding of the evolution of exo-atmospheres. We present results of a new X-ray observation of V 1298 Tau with XMM-Newton, aimed to determine more accurately the high-energy irradiation of the four planets orbiting this pre-main-sequence star, and the possible variability due to magnetic activity on short and long timescales. Following the first measurements of planetary masses in the V 1298 Tau system, we revise early guesses of the current escape rates from the planetary atmospheres, employing our updated atmospheric evaporation models to predict the future evolution of the system. Contrary to previous expectations, we find that the two outer Jupiter-sized planets will not be affected by any evaporation on Gyr timescales, and the same occurs for the two smaller inner planets, unless their true masses are lower than ~40 Me. These results confirm that relatively massive planets can reach their final position in the mass-radius diagram very early in their evolutionary history

    MITS: the Multi-Imaging Transient Spectrograph for SOXS

    Get PDF
    The Son Of X-Shooter (SOXS) is a medium resolution spectrograph R~4500 proposed for the ESO 3.6 m NTT. We present the optical design of the UV-VIS arm of SOXS which employs high efficiency ion-etched gratings used in first order (m=1) as the main dispersers. The spectral band is split into four channels which are directed to individual gratings, and imaged simultaneously by a single three-element catadioptric camera. The expected throughput of our design is >60% including contingency. The SOXS collaboration expects first light in early 2021. This paper is one of several papers presented in these proceedings describing the full SOXS instrument

    Optical design of the SOXS spectrograph for ESO NTT

    Full text link
    An overview of the optical design for the SOXS spectrograph is presented. SOXS (Son Of X-Shooter) is the new wideband, medium resolution (R>4500) spectrograph for the ESO 3.58m NTT telescope expected to start observations in 2021 at La Silla. The spectroscopic capabilities of SOXS are assured by two different arms. The UV-VIS (350-850 nm) arm is based on a novel concept that adopts the use of 4 ion-etched high efficiency transmission gratings. The NIR (800- 2000 nm) arm adopts the '4C' design (Collimator Correction of Camera Chromatism) successfully applied in X-Shooter. Other optical sub-systems are the imaging Acquisition Camera, the Calibration Unit and a pre-slit Common Path. We describe the optical design of the five sub-systems and report their performance in terms of spectral format, throughput and optical quality. This work is part of a series of contributions describing the SOXS design and properties as it is about to face the Final Design Review.Comment: 9 pages, 9 figures, published in SPIE Proceedings 1070

    The VIS detector system of SOXS

    Get PDF
    SOXS will be a unique spectroscopic facility for the ESO NTT telescope able to cover the optical and NIR bands thanks to two different arms: the UV-VIS (350-850 nm), and the NIR (800-1800 nm). In this article, we describe the design of the visible camera cryostat and the architecture of the acquisition system. The UV-VIS detector system is based on a e2v CCD 44-82, a custom detector head coupled with the ESO continuous ow cryostats (CFC) cooling system and the NGC CCD controller developed by ESO. This paper outlines the status of the system and describes the design of the different parts that made up the UV-VIS arm and is accompanied by a series of contributions describing the SOXS design solutions.Comment: 9 pages, 13 figures, to be published in SPIE Proceedings 1070

    The Acquisition Camera System for SOXS at NTT

    Full text link
    SOXS (Son of X-Shooter) will be the new medium resolution (R\sim4500 for a 1 arcsec slit), high-efficiency, wide band spectrograph for the ESO-NTT telescope on La Silla. It will be able to cover simultaneously optical and NIR bands (350-2000nm) using two different arms and a pre-slit Common Path feeding system. SOXS will provide an unique facility to follow up any kind of transient event with the best possible response time in addition to high efficiency and availability. Furthermore, a Calibration Unit and an Acquisition Camera System with all the necessary relay optics will be connected to the Common Path sub-system. The Acquisition Camera, working in optical regime, will be primarily focused on target acquisition and secondary guiding, but will also provide an imaging mode for scientific photometry. In this work we give an overview of the Acquisition Camera System for SOXS with all the different functionalities. The optical and mechanical design of the system are also presented together with the preliminary performances in terms of optical quality, throughput, magnitude limits and photometric properties.Comment: 9 pages, 7 figures, SPIE conferenc

    Global Architecture of Planetary Systems (GAPS), a project for the whole Italian Community

    Get PDF
    The GAPS project is running since 2012 with the goal to optimize the science return of the HARPS-N instrument mounted at Telescopio Nazionale Galileo. A large number of astronomers is working together to allow the Italian community to gain an international position adequate to the HARPS-N capabilities in the exoplanetary researches. Relevant scientific results are being obtained on both the main guidelines of the collaboration, i.e., the discovery surveys and the characterization studies. The planetary system discovered around the southern component of the binary XO-2 and its characterization together with that of the system orbiting the northern component are a good example of the completeness of the topics matched by the GAPS project. The dynamics of some planetary systems are investigated by studying the Rossiter-McLaughlin effect, while host stars are characterized by means of asteroseismology and star-planet interaction

    The GAPS Project: First Results

    Get PDF
    The GAPS programme is an Italian project aiming to search and characterize extra-solar planetary systems around stars with different characteristics (mass, metallicity, environment). GAPS was born in 2012, when single research groups joined in order to propose a long-term multi-purpose observing program for the exploitation of the extraordinary performances of the HARPS-N spectrograph, mounted at the Telescopio Nazionale Galileo. Now this group is a concerted community in which wide range of expertise and capabilities are shared in order to reach a more important role in the wider international context. We present the results achieved up to now from the GAPS radial velocity survey: they were obtained in both the two main objectives of the project, the planet detection and the characterization of already known exoplanetary systems. With GAPS we detected, for instance, the first confirmed binary system in which both components host planets (Desidera et al. 2014), the first planetary system around a star in an open cluster (Malavolta et al. 2016), a system of Super-Earths orbiting an M-dwarf star (Affer et al. 2016)
    corecore