13 research outputs found

    Assessment Of Different Platforms For Online Virtual Lab Demonstrations

    Get PDF
    As we move to a more sustainable world, expansion of education is key to the eradication of poverty (SDG1) and societal inequalities (SDG10). Global expansion of tertiary education offers opportunities to deliver Sustainable Development Goals by providing wide access to education in flexible learning environments. However, the quality of education (SDG4) must be maintained and enhanced as it is key to a partnership for the goals (SDG17). While increased learning online can facilitate achievement of these SDGs, there is also a move, within the education sector, to a constructivist approach and a more active learning environment. Interactive virtual learning environments (e.g. Virtual Reality) can offer considerable potential in the integration of active learning in an online environment With this background in mind, the objective of this study was to evaluate the hardware and software resources currently available for effective delivery of remote virtual laboratory learning against nine technical, social and design criteria. At the same time, it is also important to consider sustainability in this evaluation including carbon (SDG13) and ecological footprints (SDG14/15). Hardware options examined were the Computer, Google Cardboard, Meta Quest 2 and Microsoft HoloLens 2, while the software platforms examined were H5P Virtual Tours, 3D Vista Pro, Dynamics 365 Guides and a professionally created VR platform. The main findings were that there is no ‘one-size-fits-all’ system and each system has its own advantages and disadvantages depending on the resources available at the institution and the type and level of knowledge and/or skill being delivered

    The Effect of Calcination Rate on the Structure of Mesoporous Bioactive Glasses

    Get PDF
    Mesoporous bioactive glasses (MBGs) are designed to have high specific surface area. They are formulated by a sol–gel process to formulate the glass followed by calcination. This study evaluates how calcination heating rate influences the porous architecture, and thereby the specific surface area, of MBGs. MBGs of molar ratio 80:15:5 for SiO2 :CaO:P2 O 5 were calcined using both low (1 °C/min) and high (20 °C/min) heating rates, termed as L-MBG and H-MBG, respectively. The results obtained from small-angle X-ray diffraction (SAXRD) confirm that the MBGs possess 2D hexagonal (P6mm) spacing groups and wide-angle XRD confirms the amorphicity of both MBGs. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm that both batches of MBGs have similar chemical composition. Fourier transform infrared spectroscopy identifies the same functional groups present in both batches. However, transmission electron microscopy indicates that H-MBG samples exhibited discontinuities in their ordered channel structure, confirmed by the lower SAXRD peak intensity of H-MBG compared to L-MBG. These discontinuities led to a reduced surface area. L-MBG exhibits more than quadruple the surface area and double the pore volume (373.87 m2 /g and 0.27 cm3 /g) of H-MBG (85.91 m2 /g and 0.13 cm3 /g), measured through Brunauer, Emmett, and Teller nitrogen adsorption analysis. This higher surface area resulted in a significant (p \u3c 0.05) increase in the quantity of ion release from the L-MBGs compared to the H-MBGs. It is concluded that the application of a low heating rate during calcination, of the order of 1 °C/min, is more likely to result in ordered mesoporous bioactive glasses with high surface area and pore volume than MBG samples processed at a higher heating rate. [Figure not available: see fulltext.]

    The Effect of Tantalum Incorporation on the Physical and Chemical Properties of Ternary Silicon–calcium–phosphorous Mesoporous Bioactive Glasses

    Get PDF
    Synthesis and characterization of the first mesoporous bioactive glasses (MBGs) containing tantalum are reported here, along with their potential application as hemostats. Silica MBGs were synthesized using with the molar composition of (80-x)% Si, 15% Ca, 5% P, and x% Ta. It was found that incorporation of \u3e1 mol % Ta into the MBGs changes their physical and chemical properties. Increasing Ta content from 0 to 10 mol % causes a decrease in the surface area and pore volume of ~20 and ~35%, respectively. This is due to the increase in nonbridging oxygens and mismatch of thermal expansion coefficient which created discontinuities in the ordered channel structure. However, the effect is not significant on the amount of ions (Si, Ca, P, and Ta) released, from the sample into deionized water, for short durations (\u3c60 \u3emin). In a mouse tail-cut model, a significant decrease in bleeding time (≄50% of average bleeding time) was found for Ta-MBGs compared to having no treatment, Arista, and MBG without Ta. Further studies are proposed to determine the mechanism of Ta involvement with the hemostatic process. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2229–2237, 2019

    The Role of SrÂČâș on the Structure and Reactivity of SrO-CaO-ZnO-SiO2 Ionomer Glasses

    No full text
    The suitability of Glass Polyalkenoate Cements (GPCs) for use in orthopaedics is retarded by the presence in the glass phase of aluminum, a neurotoxin. Unfortunately, the aluminum ion plays an integral role in the setting process of GPCs and its absence is likely to hinder cement formation. However, the authors have previously shown that aluminum free GPCs may be formulated based on calcium zinc silicate glasses and these novel materials exhibit significant potential as hard tissue biomaterials. To further improve their potential and given that Strontium (Sr) based drugs have had success in the treatment of osteoporosis, the authors have substituted Calcium (Ca) with Sr in the glass phase of a series of aluminum free GPCs. However, to date little data exists on the effect SrO has on the structure and reactivity of SrO-CaO-ZnO-SiO2 glasses. The objective of this work was to characterise the effect of the Ca/Sr substitution on the structure of such glasses, and evaluate the subsequent reactivity of these glasses with an aqueous solution of Polyacrylic acid (PAA). To this end 29Si MAS-NMR, differential scanning calorimetry (DSC), X-ray diffraction, and network connectivity calculations, were used to characterize the structure of four strontium calcium zinc silicate glasses. Following glass characterization, GPCs were produced from each glass using a 40 wt% solution of PAA (powder:liquid = 2:1.5). The working times and setting times of the GPCs were recorded as per International standard ISO9917. The results acquired as part of this research indicate that the substitution of Ca for Sr in the glasses examined did not appear to significantly affect the structure of the glasses investigated. However it was noted that increasing the amount of Ca substituted for Sr did result in a concomitant increase in setting times, a feature that may be attributable to the higher basicity of SrO over CaO. © 2007 Springer Science+Business Media, LLC

    Evaluation of two novel aluminum-free, zinc-based glass polyalkenoate cements as alternatives to PMMA bone cement for use in vertebroplasty and balloon kyphoplasty

    Get PDF
    Vertebroplasty (VP) and balloon kyphoplasty (BKP) are now widely used for treating patients in whom the pain due to vertebral compression fractures is severe and has proved to be refractory to conservative treatment. These procedures involve percutaneous delivery of a bolus of an injectable bone cement either directly to the fractured vertebral body, VB (VP) or to a void created in it by an inflatable bone tamp (BKP). Thus, the cement is a vital component of both procedures. In the vast majority of VPs and BKPs, a poly(methyl methacrylate) (PMMA) bone cement is used. This material has many shortcomings, notably lack of bioactivity and very limited resorbability. Thus, there is room for alternative cements. We report here on two variants of a novel, bioactive, Al-free, Zn-based glass polyalkenoate cement (Zn-GPC), and how their properties compare to those of an injectable PMMA bone cement (SIMPL) that is widely used in VP and BKP. The properties determined were injectability, radiopacity, uniaxial compressive strength, and biaxial flexural modulus. In addition, we compared the compression fatigue lives of a validated synthetic osteoporotic VB model (a polyurethane foam cube with an 8 mm-diameter through-thickness cylindrical hole), at 0-2300 N and 3 Hz, when the hole was filled with each of the three cements. A critical review of the results suggests that the performance of each of the Zn-GPCs is comparable to that of SIMPL; thus, the former cements merit further study with a view to being alternatives to an injectable PMMA cement for use in VP and BKP. © 2009 Springer Science+Business Media, LLC

    Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion

    No full text
    Silica-based and borate-based glass series, with increasing amounts of TiO2 incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate’s (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO2 in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO2 to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO2 incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass¼ and Pyrex

    Time-Resolved Molecular Frame Dynamics of Fixed-in-Space CS2 Molecules,

    No full text
    Random orientation of molecules within a sample leads to blurred observations of chemical reactions studied from the laboratory perspective. Methods developed for the dynamic imaging of molecular structures and processes struggle with this, as measurements are optimally made in the molecular frame. We used laser alignment to transiently fix carbon disulfide molecules in space long enough to elucidate, in the molecular reference frame, details of ultrafast electronic-vibrational dynamics during a photochemical reaction. These three-dimensional photoelectron imaging results, combined with ongoing efforts in molecular alignment and orientation, presage a wide range of insights obtainable from time-resolved studies in the molecular frame.Peer reviewed: YesNRC publication: Ye
    corecore