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Abstract
Mesoporous bioactive glasses (MBGs) are designed to have high specific surface area. They are formulated by a sol–gel
process to formulate the glass followed by calcination. This study evaluates how calcination heating rate influences the
porous architecture, and thereby the specific surface area, of MBGs. MBGs of molar ratio 80:15:5 for SiO2:CaO:P2O5 were
calcined using both low (1 °C/min) and high (20 °C/min) heating rates, termed as L-MBG and H-MBG, respectively. The
results obtained from small-angle X-ray diffraction (SAXRD) confirm that the MBGs possess 2D hexagonal (P6mm)
spacing groups and wide-angle XRD confirms the amorphicity of both MBGs. Energy-dispersive X-ray spectroscopy and X-
ray photoelectron spectroscopy confirm that both batches of MBGs have similar chemical composition. Fourier transform
infrared spectroscopy identifies the same functional groups present in both batches. However, transmission electron
microscopy indicates that H-MBG samples exhibited discontinuities in their ordered channel structure, confirmed by the
lower SAXRD peak intensity of H-MBG compared to L-MBG. These discontinuities led to a reduced surface area. L-MBG
exhibits more than quadruple the surface area and double the pore volume (373.87 m2/g and 0.27 cm3/g) of H-MBG (85.91
m2/g and 0.13 cm3/g), measured through Brunauer, Emmett, and Teller nitrogen adsorption analysis. This higher surface area
resulted in a significant (p < 0.05) increase in the quantity of ion release from the L-MBGs compared to the H-MBGs. It is
concluded that the application of a low heating rate during calcination, of the order of 1 °C/min, is more likely to result in
ordered mesoporous bioactive glasses with high surface area and pore volume than MBG samples processed at a higher
heating rate.
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Graphical Abstract

Highlights
● Calcination rate (low or high) has no effect on the chemical composition of mesoporous bioactive glasses (MBGs).
● Calcination rate influences the physical structure of MBGs.
● Low calcination rate (1 °C/min) results in more ordered MBGs with higher surface area and pore volume compared to

high calcination rate (20 °C/min).

Keywords Mesoporous bioactive glasses ● Sol–gel ● Calcination heating rate ● Glass surface area ● Glass pore volume

1 Introduction

Since their invention in the 1960s, bioactive glasses (BGs)
have found increasing use in the clinical field. One of the
main reasons for this is their ability to form an interfacial
bond with host tissue [1]. This bond is formed as a result of
the formation of a hydroxycarbonate apatite (HCA) layer,
which is comparable in composition to the mineral phase of
bone [2]. Bone cells will proliferate at the interface, causing
bone growth into the BG [3]. Silica-based BGs have a
network structure which can contain dopants to disrupt the
continuity of the glass network, and form non-bridging
silicon–oxygen bonds (Si-NBO) [4]. The number of Si-
NBOs directly influences the bioactivity of the glasses, with
a greater number of Si-NBO bonds leading to increased
reactivity [4]. Dependent on dopants, they can also facilitate
apatite deposition [5]. Gradual degradation and release of
ionic species from the glass can have targeted effects such
as inhibition of infection and angiogenesis [6].

Mesoporous materials were first synthesized in 1992
using surface-directing agents (surfactants) [7]. Mesoporous
bioactive glasses (MBGs) possess channel structures
resulting in high surface area (SA) [8]. This facilitates

increased release of ions and results in improved bioactivity
[9]. MBGs also possess higher pore volume (PV, ~0.45
cm3/g) compared to BGs (~0.03 cm3/g) [10] with pore sizes
ranging from 2 to 50 nm [11]. These properties make MBG
candidates for drug delivery [12], implant coatings [13],
tissue engineering [13], bone grafting [14], dental [15], and
hemostatic applications [16]. An ideal hemostat should have
the following properties: it can achieve hemostasis within
2 min of application [17], it is biodegradable, anti-bacterial,
suitable for both deep and irregular wounds, and non-
inflammatory [18]. The porous morphology of MBGs can
absorb water from the blood into their mesopores and can
concentrate blood-clotting factors, accelerating hemostasis
[19]. Their high surface area gives fast degradability and
dopants can be used to inhibit bacterial infection and
inflammation [20].

Sol–gels are stable suspensions of colloids in a porous
gel network [21]. The sol–gel process is the building block
for the synthesis of MBGs. There are two main parameters
that affect the physical structure of MBGs (aside from
composition): type of surfactant and calcination tempera-
ture. The effects of surfactant have been studied and
reviewed, and the effects of surfactant on surface area, pore
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volume, and pore size have been correlated [22]. CTAB
(cetyltrimethylammonium bromide) produces the highest
SA and PV, followed by the F-series poloxamers (F127 and
F108), and lastly the P-series poloxamers (P123 and P85)
[22]. The effect of calcination temperature was studied by
Pereira et al. [23]. It was found that SA and PV decrease as
the calcination temperature is increased from 400 to 800 °C.
This was done without the use of surfactant [23]. The effect
of calcination temperature, heating rate, and the residence
time of thermal treatment for MBG scaffolds were studied
by Shih et al. [24]. They synthesized MBG scaffolds uti-
lizing F-127 as a surfactant at various calcination tem-
peratures (400, 500, 600, 700, and 800 °C), using different
heating rates (1, 10, and 20 °C/min) and with varying
residence times (2, 4, 6, and 8 h). In their study, there was
no clear correlation between the three parameters. To the
authors’ knowledge, the literature is lacking insight into the
relationship between heating rate and MBGs’ physical and
chemical properties.

It is hypothesized that heating rate during calcination
affects the physical and chemical structure of sol–gel glas-
ses. In order to confirm this, two batches of MBG were
synthesized using low (1 °C/min) and high (20 °C/min)
heating rates. The physical structure and chemical compo-
sition of these two batches are compared and analyzed.

2 Synthesis and characterization

2.1 Materials

Reagent-grade triblock copolymer P123 (EO20PO70EO20),
calcium nitrate tetrahydrate [≥99.0%, Ca(NO3)2.4H2O],
triethyl phosphate (≥99.8%, TEP), tetraethyl orthosilicate
(98%, TEOS), and ethanol (EtOH) were used. Reagent-
grade hydrochloric acid (HCl) was diluted to 0.5M HCl
using deionized (DI) water. All reagents were purchased
from Sigma Aldrich (Oakville, ON, Canada). For this work,
P123 was chosen as a surface-directing agent because it
yields more ordered mesoporous structures compared to
other agents such as CTAB and F127 [22]. The more
ordered channels facilitate better ion release compared to
random channel structures.

2.2 Synthesis

MBG synthesis was performed following the process of
Yan et al. [8]. Typically, 4 g of P123 and 1.4 g of calcium
nitrate tetrahydrate were dissolved in 76 mL of EtOH. In a
separate graduated cylinder, 1 mL of 0.5 M hydrochloric
acid and 7.18 mL of TEOS were left to react for the acid-

catalyzed hydrolysis of TEOS. A volume of 0.68 mL TEP
was added to the EtOH solution. Lastly, the TEOS-acid
solution was poured into the EtOH solution. The solution
was covered and stirred overnight. It was then transferred to
a Petri dish for 5 days to allow for the evaporation-induced
self-assembly (EISA) process. The EISA-derived gel was
then calcined at 650 °C using a Hot Spot 110 furnace
(Zircar Zirconia Inc., Florida, USA) for 6 h, with (20 and 1 °
C/min) heating rates. The glasses have identical chemical
compositions (Table 1).

The calcined samples were ground in a PM 100 ball mill
(Retsch GmbH, Germany) at 500 revolutions per min (rpm)
for 45 min. A 45-µm sieve was used to obtain powders with
particle sizes <45 µm for characterization.

2.3 X-ray diffraction (XRD)

Small-angle X-ray diffraction (SAXRD) patterns were col-
lected using an Anton Parr SAXS diffractometer (Anton
Paar, Austria) with a Cu source from 0.2° to 10° (2θ), at a
step size of 0.04°. A 2D detector was used with a photo-
graphic film and a 5-min exposure time for each sample.
The operating voltage was 40 kV and the tube current was
50 mA.

Wide-angle X-ray diffraction (WAXRD) patterns were
collected using a Philips PW3710 X-ray diffractometer
(Phillips, Holland) with a Cu source from 10° to 80° (2θ), at
a step size of 0.1° and count time of 2 s per step. A gen-
erator voltage of 45 kV and a tube current of 20 mA were
employed.

2.4 Energy-dispersive X-ray spectroscopy (EDS) and
X-ray photoelectron spectroscopy (XPS)

A JEOL 6380LV scanning electron microscope (JEOL,
Massachusetts, USA) equipped with Oxford EDS was used
to examine the chemical composition of each sample. The
generating voltage used was 20 kV. A 1-cm Cu sample
holder with double-sided carbon tape was pressed onto
powder samples and placed into the scanning electron
microscope (SEM) for analysis.

XPS was conducted on a K-Alpha XPS system (Thermo
Fisher Scientific, Massachusetts, USA). Monochromated Al
K-Alpha X-rays were used for analysis with a spot size of

Table 1 Compositions for synthesized MBGs (mol%)

Sample code SiO2 CaO P2O5

H-MBG 80 15 5

L-MBG 80 15 5
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400 µm. Charge compensation was achieved utilizing a low
energy flood of electrons and ions at ~5 × 10−8 mbar
vacuum. Residual pressure was from argon associated with
operation of a charge compensation source. The survey
spectrum was acquired in a high-pass energy (200 eV), low
point-density (1 point/eV) scanned mode. Regional spectra
used to determine the relative atomic composition, as well
as for determination of chemical information, were acquired
in a low-pass energy (50 eV), high point-density (0.1-eV
spacing) scanned mode.

2.5 Fourier transform infrared (FTIR) spectroscopy

Attenuated total reflection Fourier transform infrared (ATR-
FTIR) spectroscopy was carried out on the powder samples
using an ATR-iS50 FTIR spectrometer (Thermo Scientific,
Massachusetts, USA). Spectra were collected from 400 to
1500 cm−1 with a spectral resolution of 0.25 cm−1.

2.6 Transmission electron microscopy (TEM)

Transmission electron microscopy was carried out on a
Hitachi HT-7700 (Hitachi, Japan), using 80-kV generating
voltage, to look at the structure of the nano-channels within
the glass. Samples were embedded in modified Spurr’s resin
(Electron Microscopy Sciences, Pennsylvania, USA),
ultramicrotomed, and then placed onto copper grids for
imaging.

2.7 Brunauer–Emmett–Teller (BET) and Barrett–
Joyner–Halenda (BJH) analysis

Surface area measurements were carried out by nitrogen gas
adsorption in a Micromeritics Gemini VII 2390 gas

adsorption analyser (Micromeritics, Georgia, USA). The
nitrogen (N2) adsorption isotherm was measured at 77 K for
both glasses. Surface area was then calculated using Bru-
nauer–Emmett–Teller (BET) theory, and pore size dis-
tribution and pore volume were estimated using the Barrett–
Joyner–Halenda (BJH) schema.

2.8 Ion release analysis

Ion release was conducted in DI water and analyzed using
inductively coupled plasma-optical emission spectroscopy
(ICP-OES). Fifty milligrams of sample was placed in a
micro-centrifuge tube containing 1 mL of DI water. After
the appropriate time intervals (15, 30, and 60 min), samples
were centrifuged at 10,000 rpm for 2 min [25]. The super-
natant was collected and diluted to conduct analyses.

Chemical compositions of the collected samples were
analyzed using ICP-OES, performed on an Optima 7300
DV ICP-OES (Perkin Elmer, Massachusetts, USA). Cali-
bration standards for silicon, calcium, and phosphorus were
prepared from a 1000 parts per million (ppm) stock solu-
tion. For the silicon sample, 1, 5, 10, and 25 ppm were used
as calibration standards. For calcium, 0.5, 1, 5, and 10 ppm,
and for phosphorus, 0.1, 0.5, 1, and 5 ppm calibration
standards were used. In all cases, DI water was used as the
blank.

2.9 Statistical analysis

Data were plotted using the mean ± standard deviation of
samples (n= 9). Statistical analysis was performed using
statistical package for social sciences (SPSS) software (IBM
SPSS Statistics, version 24, New York, USA). Independent

Fig. 1 Normalized a SAXRD and b WAXRD traces for H-MBG and L-MBG
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samples t test was used to analyze the data and to find out
statistical significance with p < 0.05.

3 Results

Figure 1a shows the normalized SAXRD patterns for the H-
and L-MBG samples. Both samples exhibited two diffrac-
tion peaks in the range 2θ from 0.2 to 2° which are char-
acteristic of the P6mm space group [26] in hexagonal
crystal systems. There is a slight right shift in the peak
positions from H-MBG to L-MBG, and the intensity of the

H-MBG peaks is lower. Figure 1b shows the WAXRD
patterns for both samples, confirming the amorphicity of
both glasses.

EDS results (Table 2) confirm the presence of O, Si, Ca,
and P in both glasses. Compositional data were also mea-
sured with XPS and relevant spectra for the glasses are
shown in Figs. 2 and 3. Expected peaks for O, Si, Ca, and P
are observed in the XPS spectrum. The carbon peak is due
to the presence of adventitious carbon from adsorption of
impurities during MBG handling and synthesis. Atomic
percentages (normalized without carbon) are shown in
Table 3 for L-MBG and H-MBG.

FTIR transmission spectra are shown in Fig. 4, along
with the corresponding peaks. For L-MBG, the peak at 445

Table 2 Summary of compositions (wt%) obtained from EDS

Sample O Si Ca P

L-MBG 58.60 31.40 7.23 2.77

H-MBG 63.36 27.30 7.17 2.17

Fig. 2 XPS spectrum for L-MBG

Fig. 3 XPS spectrum for H-MBG

Table 3 Normalized XPS data (at%)

Sample O Si Ca P

L-MBG 60.70 34.42 2.73 2.15

H-MBG 67.69 26.23 4.23 1.85

Fig. 4 FT-IR transmission spectra for L-MBG and H-MBG

Fig. 5 TEM image of L-MBG at 30-k magnification

430 Journal of Sol-Gel Science and Technology (2019) 89:426–435



cm−1 represents Si–O–Si bending vibration [27], whereas
the peak at 798 cm−1 indicates symmetric stretching of the
Si–O bond [28]. The peak at 568 cm−1 corresponds to P–O
bending mode [5]. Characteristic peaks located at 1041 and
1216 cm−1 are attributed to asymmetric stretching of Si–O
bonds [29]. Lastly, the peak observed at 940 cm−1 is iden-
tified as the Si-NBO bond [29, 30]. In the case of H-MBG,
all the functional groups were observed in the same inten-
sities as L-MBG.

TEM images of L-MBG and H-MBG samples can be
seen from Figs. 5 to 8, respectively. In the L-MBG sample,
two-dimensional (2D) hexagonal well-ordered mesoporous
channels are observed (Figs. 5 and 6). The TEM image of
the H-MBG sample exhibits similar 2D hexagonal channels.
However, H-MBG exhibits more discontinuities than L-
MBG (Figs. 7 and 8).

Adsorption isotherms of both samples are shown in Fig.
9. They appear to be type IV isotherms in both cases,
indicated by complete monolayer formation at low pres-
sures, followed by capillary condensation at higher relative
pressures (approaching relative saturation). This confirms a
mesoporous-type surface structure in both cases—typical of
adsorption curves for mesoporous glasses observed

elsewhere [31, 32]. BET surface area for L-MBG is 373.87
m2/g and BJH adsorption cumulative pore volume is 0.27
cm3/g. For H-MBG, BET surface area and BJH pore
volume are 85.91 m2/g and 0.13 cm3/g, respectively. The
average pore diameter is noted as 4.34 nm for L-MBG and
4.65 nm for H-MBG. Table 4 summarizes BET surface
area, BJH pore volume, and average pore diameter results.

The ion release profiles for both sets of MBGs are
shown in Fig. 10. It is observed that SiO4

4− ion con-
centration increases significantly from 15 to 30 min, for L-
MBG, and then begins to reach a steady state (Fig. 10a).
The ions (SiO4

4−, Ca2+, and PO4
3−) released from H-MBG

have negligible change in concentration for consecutive
time intervals (64.7, 56.3, and 54.8 ppm for SiO4

4−; 21.1,
19, and 19.8 ppm for Ca2+; and 5.6, 4.9, and 4.9 ppm
for PO4

3−).

4 Discussions

SAXRD peaks’ presence indicates that both glasses have
2D hexagonal structure. Since the WAXRD shows that the
glasses are amorphous, this structure is not from crystal
formation but instead from the mesoporous architecture.
The peaks are indicative of the P6mm space group in
hexagonal lattice systems. Compositional data, measured
through EDS and XPS, show that both L-MBG and H-
MBG are chemically identical. Calcium content from the
XPS data (Table 3) is lower than expected because XPS
measures the surface composition more than the bulk. It has
been shown that calcium ions remain in the bulk pre-
ferentially [33]. Analyzing FTIR transmission spectra (Fig.
4), there are no differences between the two samples’
functional groups, meaning the two glasses are chemically
identical.

TEM images (from Figs. 5 to 8) show that there are
differences in the mesoporous architecture of the two

Fig. 6 TEM image of L-MBG at 70-k magnification

Fig. 7 TEM image of H-MBG at 30-k magnification. Arrow sign in the
discontinuous regions of mesoporous channels

Fig. 8 TEM image of H-MBG at 70-k magnification. Arrows indicate
discontinuous regions of the mesoporous structure
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glasses. The H-MBG has more discontinuities in the
ordered channels (as seen in Figs. 7 and 8) compared to the
L-MBG; this may be attributed to the higher heating rate.
P123 is a hydrophilic surfactant and produces small,
ordered micelles in aqueous media [21]. During the EISA
process, the micelles self-assemble to create the mesoporous
channels [34]. Calcination evaporates the micelles over
time, leaving behind the mesoporous architecture. It is
postulated that the rapid heating causes the micelles to
evaporate vigorously out of the sample. Slow heating would
result in the steady removal of the surfactant, retaining the
integrity of the mesoporous structure (Figs. 5 and 6). The
result of these discontinuities is the decrease in surface area
and pore volume of the H-MBG samples. L-MBG exhibits
more than fourfold higher surface area and twofold greater
pore volume than H-MBG. Pore diameter data show that
there is a minor increase (~7%) in pore diameter for H-
MBG relative to L-MBG. This may be another effect of the
vigorous evaporation caused by the high heating rate.
Usually, the pore diameter is determined during the EISA
process by the size of the micelles, not during calcination
[21]. However, rapid heating can cause expansion of the
micelles, thereby expanding the diameter of the channel.
The increase in pore diameter is corroborated with SAXRD
measurements. There is a slight right shift of the peaks from
the H-MBG to the L-MBG samples. This can be attributed

to a decrease in pore diameter from H-MBG to L-MBG, as
smaller spacings diffract at higher angles. H-MBG also has
a lower peak intensity because the discontinuities in the
structure do not allow for constructive interference of the
diffracted X-rays. Higher peak intensity reflects the higher
ordered structure of L-MBG [35].

The change in surface area directly affects the ion release
of the samples. SiO4

4− ion release from H-MBG is sig-
nificantly lower compared to L-MBG (Fig. 10a). This is due
to L-MBG having higher surface area and a more ordered
channel structure compared to H-MBG, resulting in its
faster degradation. It is also noted that Ca2+ and PO4

3− ion
concentration of L-MBG samples decreased after 30 min
(Fig. 10b, c). A possible explanation for this is the devel-
opment of some calcium phosphate on the glass surface.
This would cause a depletion in the solution Ca2+ and PO4

3

− concentrations, and so explains why the concentration
decreased for both ions. Lower concentration of ions from
H-MBG is the result of low surface area and pore volume
causing slower degradation of the H-MBG. There is a sta-
tistically significant (p < 0.05) increase of ions from L-
MBG after 15, 30, and 60 min relative to H-MBG. These
time intervals were chosen based on the proposed use of
these MBGs as hemostats for short-term blood coagulation
(persistence of bleeding for long durations requires surgical
closing). Platelet plug formation in primary hemostasis
occurs within an hour [36]. The mechanism by which
MBGs achieve hemostasis is thought to be a physical pro-
cess (absorption of water and concentration of clotting
factors). For this, high surface area and pore volume are
more critical compared to the concentration of ions released.
Since Ca2+ ions speed up the coagulation process, any
increase in the concentration of this ion is beneficial [37].
Since L-MBGs provide a greater increase in the Ca2+ ion,
their effect on hemostasis will also be greater.

Fig. 9 Adsorption isotherm of a H-MBG and b L-MBG

Table 4 Physical properties of L-MBG and H-MBG

Sample BET surface
area (m2/g)

BJH pore
volume (cm3/g)

BJH average pore
diameter (nm)

L-MBG 373.87 0.27 4.34

H-MBG 85.91 0.13 4.65
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5 Conclusions

Two batches of mesoporous bioactive glass were for-
mulated from identical starting reagents, and the effect of
calcination rate on composition and structure was evaluated.
WAXRD, EDS, XPS, and FTIR results confirmed that
heating rate does not influence chemical composition.

Analyzing TEM, BET, and SAXRD results, it is evident
that the calcining rate does influence the physical structure
of the MBGs. TEM imaging gave a visual of many dis-
continuities in the mesoporous channels for H-MBG, and
BET quantified its low specific surface area and pore
volume, and higher pore diameter. Relatively, L-MBGs had
few discontinuities, a fourfold greater specific surface area,
and a twofold greater pore volume. This led to larger
amounts of ions released from L-MBG compared to H-
MBG.

L-MBGs have high potential as hemostats because the
greater surface area allows for more water absorption/

clotting factor concentration, and releases more Ca2+ for
speeding up hemostasis.

The results presented in this study provide insight on the
effects of heating rate on the physical structure of MBGs.
During synthesis, low heating rate is best for getting well-
structured mesoporous channels.

5.1 Limitations

Calcination heating rate was only varied once: 1 and 20 °C/
min. More heating rates could be tested intermittently to
find an ideal heating rate for faster experimental time but
few MBG discontinuities.

This study does not include in vitro or in vivo data to
explain the effect of changing the heating rate on the in vitro
apatite formation or cell activity, however, this will be the
focus of a follow-up manuscript.
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