1,928 research outputs found
What is the Source Level of Pile-Driving Noise in Water?
To meet the growing demand for carbon-free energy sources, the European Union (EU) has ambitious plans to increase its capacity for generation of offshore wind power. The United Kingdom and The Netherlands, for example, plan to increase their offshore power-generating capacity to 33 and 6 GW, respectively, by the year 2020. Assuming that this power is generated entirely by wind and that a single wind turbine can generate up to 10 MW, at least 3,900 offshore turbines would be required by these two states alone to achieve this goal. A popular turbine construction method known as “pile driving” involves the use of hammering a steel cylinder (a “monopile”) into the seabed. A concern has arisen for the possible effect on mammals (Southall et al. 2007) and fish (Popper and Hastings 2009) of the sound produced by the succession of hammer impacts required to sink the pile to its required depth (tens of meters)
The Architectural Design Rules of Solar Systems based on the New Perspective
On the basis of the Lunar Laser Ranging Data released by NASA on the Silver
Jubilee Celebration of Man Landing on Moon on 21st July 1969-1994, theoretical
formulation of Earth-Moon tidal interaction was carried out and Planetary
Satellite Dynamics was established. It was found that this mathematical
analysis could as well be applied to Star and Planets system and since every
star could potentially contain an extra-solar system, hence we have a large
ensemble of exoplanets to test our new perspective on the birth and evolution
of solar systems. Till date 403 exoplanets have been discovered in 390
extra-solar systems. I have taken 12 single planet systems, 4 Brown Dwarf -
Star systems and 2 Brown Dwarf pairs. Following architectural design rules are
corroborated through this study of exoplanets. All planets are born at inner
Clarke Orbit what we refer to as inner geo-synchronous orbit in case of
Earth-Moon System. By any perturbative force such as cosmic particles or
radiation pressure, the planet gets tipped long of aG1 or short of aG1. Here
aG1 is inner Clarke Orbit. The exoplanet can either be launched on death spiral
as CLOSE HOT JUPITERS or can be launched on an expanding spiral path as the
planets in our Solar System are. It was also found that if the exo-planet are
significant fraction of the host star then those exo-planets rapidly migrate
from aG1 to aG2 and have very short Time Constant of Evolution as Brown Dwarfs
have. This vindicates our basic premise that planets are always born at inner
Clarke Orbit. This study vindicates the design rules which had been postulated
at 35th COSPAR Scientific Assembly in 2004 at Paris, France, under the title
,New Perspective on the Birth & Evolution of Solar Systems.Comment: This paper has been reported to Earth,Moon and Planets Journal as
MOON-S-09-0007
Designing citizen science tools for learning: lessons learnt from the iterative development of nQuire
This paper reports on a 4-year research and development case study about the design of citizen science tools for inquiry learning. It details the process of iterative pedagogy-led design and evaluation of the nQuire toolkit, a set of web-based and mobile tools scaffolding the creation of online citizen science investigations. The design involved an expert review of inquiry learning and citizen science, combined with user experience studies involving more than 200 users. These have informed a concept that we have termed ‘citizen inquiry’, which engages members of the public alongside scientists in setting up, running, managing or contributing to citizen science projects with a main aim of learning about the scientific method through doing science by interaction with others. A design-based research (DBR) methodology was adopted for the iterative design and evaluation of citizen science tools. DBR was focused on the refinement of a central concept, ‘citizen inquiry’, by exploring how it can be instantiated in educational technologies and interventions. The empirical evaluation and iteration of technologies involved three design experiments with end users, user interviews, and insights from pedagogy and user experience experts. Evidence from the iterative development of nQuire led to the production of a set of interaction design principles that aim to guide the development of online, learning-centred, citizen science projects. Eight design guidelines are proposed: users as producers of knowledge, topics before tools, mobile affordances, scaffolds to the process of scientific inquiry, learning by doing as key message, being part of a community as key message, every visit brings a reward, and value users and their time
The complexities of breast cancer desmoplasia
The stromal, or 'desmoplastic', responses seen histologically in primary breast carcinomas can vary from being predominantly cellular (fibroblasts/myofibroblasts) with little collagen to being a dense acellular tissue. The mechanisms underlying the stromal response are complex; paracrine activation of myofibroblasts by growth factors is important but the contribution of cytokines/chemokines should not be ignored. A recent xenograft study has proposed that platelet-derived growth factor (PDGF) is the initiator of the desmoplastic response, but this has not been confirmed by (limited) analyses in vivo. Further studies are required to elaborate the mechanisms of the desmoplastic response, to determine its role in breast cancer progression and whether it is the same for all carcinomas
Shot noise in mesoscopic systems
This is a review of shot noise, the time-dependent fluctuations in the
electrical current due to the discreteness of the electron charge, in small
conductors. The shot-noise power can be smaller than that of a Poisson process
as a result of correlations in the electron transmission imposed by the Pauli
principle. This suppression takes on simple universal values in a symmetric
double-barrier junction (suppression factor 1/2), a disordered metal (factor
1/3), and a chaotic cavity (factor 1/4). Loss of phase coherence has no effect
on this shot-noise suppression, while thermalization of the electrons due to
electron-electron scattering increases the shot noise slightly. Sub-Poissonian
shot noise has been observed experimentally. So far unobserved phenomena
involve the interplay of shot noise with the Aharonov-Bohm effect, Andreev
reflection, and the fractional quantum Hall effect.Comment: 37 pages, Latex, 10 figures (eps). To be published in "Mesoscopic
Electron Transport," edited by L. P. Kouwenhoven, G. Schoen, and L. L. Sohn,
NATO ASI Series E (Kluwer Academic Publishing, Dordrecht
Concepts of Cardiac Development in Retrospect
Recent research, enabled by powerful molecular techniques, has revolutionized our concepts of cardiac development. It was firmly established that the early heart tube gives rise to the left ventricle only, and that the remainder of the myocardium is recruited from surrounding mesoderm during subsequent development. Also, the cardiac chambers were shown not to be derived from the entire looping heart tube, but only from the myocardium at its outer curvatures. Intriguingly, many years ago, classic experimental embryological studies reached very similar conclusions. However, with the current scientific emphasis on molecular mechanisms, old morphological insights became underexposed. Since cardiac development occurs in an architecturally complex and dynamic fashion, molecular insights can only fully be exploited when placed in a proper morphological context. In this communication we present excerpts of important embryological studies of the pioneers of experimental cardiac embryology of the previous century, to relate insights from the past to current observations
Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53
Background: The availability of various "omics" datasets creates a prospect of performing the study of genome-wide genetic regulatory networks. However, one of the major challenges of using mathematical models to infer genetic regulation from microarray datasets is the lack of information for protein concentrations and activities. Most of the previous researches were based on an assumption that the mRNA levels of a gene are consistent with its protein activities, though it is not always the case. Therefore, a more sophisticated modelling framework together with the corresponding inference methods is needed to accurately estimate genetic regulation from "omics" datasets.
Results: This work developed a novel approach, which is based on a nonlinear mathematical model, to infer genetic regulation from microarray gene expression data. By using the p53 network as a test system, we used the nonlinear model to estimate the activities of transcription factor (TF) p53 from the expression levels of its target genes, and to identify the activation/inhibition status of p53 to its target genes. The predicted top 317 putative p53 target genes were supported by DNA sequence analysis. A comparison between our prediction and the other published predictions of p53 targets suggests that most of putative p53 targets may share a common depleted or enriched sequence signal on their upstream non-coding region.
Conclusions: The proposed quantitative model can not only be used to infer the regulatory relationship between TF and its down-stream genes, but also be applied to estimate the protein activities of TF from the expression levels of its target genes
- …