11 research outputs found
Establishment of a Replicating Plasmid in Rickettsia prowazekii
Rickettsia prowazekii, the causative agent of epidemic typhus, grows only within the cytosol of eukaryotic host cells. This obligate intracellular lifestyle has restricted the genetic analysis of this pathogen and critical tools, such as replicating plasmid vectors, have not been developed for this species. Although replicating plasmids have not been reported in R. prowazekii, the existence of well-characterized plasmids in several less pathogenic rickettsial species provides an opportunity to expand the genetic systems available for the study of this human pathogen. Competent R. prowazekii were transformed with pRAM18dRGA, a 10.3 kb vector derived from pRAM18 of R. amblyommii. A plasmid-containing population of R. prowazekii was obtained following growth under antibiotic selection, and the rickettsial plasmid was maintained extrachromosomally throughout multiple passages. The transformant population exhibited a generation time comparable to that of the wild type strain with a copy number of approximately 1 plasmid per rickettsia. These results demonstrate for the first time that a plasmid can be maintained in R. prowazekii, providing an important genetic tool for the study of this obligate intracellular pathogen
In vitro culturing of ciliary respiratory cells—a model for studies of genetic diseases
Primary ciliary dyskinesia (PCD) is a rare genetic disorder caused by the impaired functioning of ciliated cells. Its diagnosis is based on the analysis of the structure and functioning of cilia present in the respiratory epithelium (RE) of the patient. Abnormalities of cilia caused by hereditary mutations closely resemble and often overlap with defects induced by the environmental factors. As a result, proper diagnosis of PCD is difficult and may require repeated sampling of patients’ tissue, which is not always possible. The culturing of differentiated cells and tissues derived from the human RE seems to be the best way to diagnose PCD, to study genotype–phenotype relations of genes involved in ciliary dysfunction, as well as other aspects related to the functioning of the RE. In this review, different methods of culturing differentiated cells and tissues derived from the human RE, along with their potential and limitations, are summarized. Several considerations with respect to the factors influencing the process of in vitro differentiation (cell-to-cell interactions, medium composition, cell-support substrate) are also discussed
No evidence for the effectiveness of systemic corticosteroids in acute pharyngitis, community-acquired pneumonia and acute otitis media
Corticosteroids have been used to treat infectious diseases for more than 50\ua0years but, although it has been shown that they are highly effective in improving the clinical course of some diseases, their effects have not been clearly defined in others. Nevertheless, they are still used by a considerable number of physicians. This review analyses the role of systemic corticosteroids in the treatment of acute pharyngitis (AP), community-acquired pneumonia (CAP) and acute otitis media (AOM). A number of trials involving patients with AP have been carried out, but most are marred by methodological flaws that do not allow any firm conclusions to be drawn. The number of trials involving CAP patients is even higher, and the data suggest that corticosteroids may reduce the risk of death only in patients with severe disease. There are very few data concerning AOM, and there is currently no reason for prescribing corticosteroids to treat it. Overall, the data showed that there is, currently, no indication for the universal use of systemic corticosteroids in any of the reviewed diseases and, further, high-quality studies of all of these respiratory tract infections are needed in order to identify the patients for whom the prescription of corticosteroids is rationally acceptabl
Dengue viruses – an overview
Dengue viruses (DENVs) cause the most common arthropod-borne viral disease in man with 50–100 million infections per year. Because of the lack of a vaccine and antiviral drugs, the sole measure of control is limiting the Aedes mosquito vectors. DENV infection can be asymptomatic or a self-limited, acute febrile disease ranging in severity. The classical form of dengue fever (DF) is characterized by high fever, headache, stomach ache, rash, myalgia, and arthralgia. Severe dengue, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) are accompanied by thrombocytopenia, vascular leakage, and hypotension. DSS, which can be fatal, is characterized by systemic shock. Despite intensive research, the underlying mechanisms causing severe dengue is still not well understood partly due to the lack of appropriate animal models of infection and disease. However, even though it is clear that both viral and host factors play important roles in the course of infection, a fundamental knowledge gap still remains to be filled regarding host cell tropism, crucial host immune response mechanisms, and viral markers for virulence