46 research outputs found

    Modeling lymphocyte homing and encounters in lymph nodes

    Get PDF
    International audienceBackgroundThe efficiency of lymph nodes depends on tissue structure and organization, which allow the coordination of lymphocyte traffic. Despite their essential role, our understanding of lymph node specific mechanisms is still incomplete and currently a topic of intense research.ResultsIn this paper, we present a hybrid discrete/continuous model of the lymph node, accounting for differences in cell velocity and chemotactic response, influenced by the spatial compartmentalization of the lymph node and the regulation of cells migration, encounter, and antigen presentation during the inflammation process.ConclusionOur model reproduces the correct timing of an immune response, including the observed time delay between duplication of T helper cells and duplication of B cells in response to antigen exposure. Furthermore, we investigate the consequences of the absence of dendritic cells at different times during infection, and the dependence of system dynamics on the regulation of lymphocyte exit from lymph nodes. In both cases, the model predicts the emergence of an impaired immune response, i.e., the response is significantly reduced in magnitude. Dendritic cell removal is also shown to delay the response time with respect to normal conditions

    Visualizing early splenic memory CD8+ T cells reactivation against intracellular bacteria in the mouse

    Get PDF
    International audienceMemory CD8(+) T cells represent an important effector arm of the immune response in maintaining long-lived protective immunity against viruses and some intracellular bacteria such as Listeria monocytogenes (L.m). Memory CD8(+) T cells are endowed with enhanced antimicrobial effector functions that perfectly tail them to rapidly eradicate invading pathogens. It is largely accepted that these functions are sufficient to explain how memory CD8(+) T cells can mediate rapid protection. However, it is important to point out that such improved functional features would be useless if memory cells were unable to rapidly find the pathogen loaded/infected cells within the infected organ. Growing evidences suggest that the anatomy of secondary lymphoid organs (SLOs) fosters the cellular interactions required to initiate naive adaptive immune responses. However, very little is known on how the SLOs structures regulate memory immune responses. Using Listeria monocytogenes (L.m) as a murine infection model and imaging techniques, we have investigated if and how the architecture of the spleen plays a role in the reactivation of memory CD8(+) T cells and the subsequent control of L.m growth. We observed that in the mouse, memory CD8(+) T cells start to control L.m burden 6 hours after the challenge infection. At this very early time point, L.m-specific and non-specific memory CD8(+) T cells localize in the splenic red pulp and form clusters around L.m infected cells while naïve CD8(+) T cells remain in the white pulp. Within these clusters that only last few hours, memory CD8(+) T produce inflammatory cytokines such as IFN-gamma and CCL3 nearby infected myeloid cells known to be crucial for L.m killing. Altogether, we describe how memory CD8(+) T cells trafficking properties and the splenic micro-anatomy conjugate to create a spatio-temporal window during which memory CD8(+) T cells provide a local response by secreting effector molecules around infected cells

    Quantifying Tertiary Lymphoid Structure-Associated Genes in Formalin-Fixed Paraffin-Embedded Breast Cancer Tissues.

    No full text
    Tertiary lymphoid structures (TLS) have been detected in several types of human solid tumors. These structures are thought to regulate local adaptive immune responses that can promote or antagonize tumor progression. Despite positive prognostic values associated with a TLS presence in several studies, discrepancies still exist. TLS are structurally organized entities composed of varying numbers of multiple cell types making their assessment in tumor tissues, particularly biopsies, challenging. Immunohistochemical staining of TLS-related cell populations is the most frequently used method for identifying and scoring them; however, TLS-related gene expression has also been explored. The protocols described are detailed to allow the user to quantify TLS-related gene expression on formalin-fixed paraffin-embedded human breast tumor tissues.info:eu-repo/semantics/publishe
    corecore