34 research outputs found

    Visuomotor Cerebellum in Human and Nonhuman Primates

    Get PDF
    In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula–nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed

    Protocol for a statewide randomized controlled trial to compare three training models for implementing an evidence-based treatment

    Full text link

    Aerobic fitness is associated with greater hippocampal cerebral blood flow in children

    Get PDF
    The present study is the first to investigate whether cerebral blood flow in the hippocampus relates to aerobic fitness in children. In particular, we used arterial spin labeling (ASL) perfusion MRI to provide a quantitative measure of blood flow in the hippocampus in 73 7- to 9-year-old preadolescent children. Indeed, aerobic fitness was found to relate to greater perfusion in the hippocampus, independent of age, sex, and hippocampal volume. Such results suggest improved microcirculation and cerebral vasculature in preadolescent children with higher levels of aerobic fitness. Further, aerobic fitness may influence how the brain regulates its metabolic demands via blood flow in a region of the brain important for learning and memory. To add specificity to the relationship of fitness to the hippocampus, we demonstrate no significant association between aerobic fitness and cerebral blood flow in the brainstem. Our results reinforce the importance of aerobic fitness during a critical period of child development

    Resolved Molecular Gas Observations of MaNGA Post-starbursts Reveal a Tumultuous Past

    Get PDF
    Abstract Post-starburst (PSB) galaxies have recently and rapidly quenched their star formation; thus, they are an important way to understand how galaxies transition from star-forming late types to quiescent early types. The recent discovery of large cold gas reservoirs in PSB galaxies calls into question the theory that galaxies must lose their gas to become quiescent. Optical Integral Field Spectroscopy (IFS) surveys have revealed two classes of PSB galaxies: central PSB (cPSB) galaxies with central quenching regions and ring PSB (rPSB) galaxies with quenching in their outskirts. We analyze a sample of 13 nearby (z &lt; 0.1) PSB galaxies with spatially resolved optical IFS data from the Mapping Nearby Galaxies at Apache Point Observatory survey and matched resolution Atacama Large Millimeter/submillimeter Array observations of 12CO(1–0). Disturbed stellar kinematics in 7/13 of our PSB galaxies and centrally concentrated molecular gas is consistent with a recent merger for most of our sample. In galaxies without merger evidence, alternate processes may funnel gas inward and suppress star formation, which may include outflows, stellar bars, and minor mergers or interactions. The star formation efficiencies of the PSB regions in nearly half our galaxies are suppressed while the gas fractions are consistent with star-forming galaxies. Active galactic nucleus (AGN) feedback may drive this stabilization, and we observe AGN-consistent emission in the centers of 5/13 galaxies. Finally, our cPSB and rPSB galaxies have similar properties except the ionized and molecular gas in cPSB galaxies is more disturbed. Overall, the molecular gas in our PSB galaxies tends to be compact and highly disturbed, resulting in concentrated gas reservoirs unable to form stars efficiently.</jats:p
    corecore