280 research outputs found

    Bronchiolitis obliterans in bone marrow transplant recipients in Hong Kong

    Get PDF
    published_or_final_versio

    A pilot study of transcatheter arterial interferon embolization for hepatocellular carcinoma

    Get PDF
    published_or_final_versio

    Efficacy and safety profiles of a combination of gemcitabine and ifosfamide on Chinese patients with advanced non-small cell lung cancer

    Get PDF
    published_or_final_versio

    Exhaled nitric oxide (eNO) level is not related to quality of life (QoL) parameters in non-small cell lung cancer (NSCLC)

    Get PDF
    published_or_final_versio

    Effects of herbal preparation, corioulus versicolor Yun-zhi, on non-small cell lung cancer (NSCLC)

    Get PDF
    published_or_final_versio

    Risk factors for severe hand foot mouth disease in Singapore: a case control study

    Full text link
    BACKGROUND: Hand foot mouth disease (HFMD) is a common childhood infection that can potentially lead to serious complications. The aim of this study is to identify risk factors of acquiring severe HFMD in our population. METHODS: We performed a case control study using patients admitted to our hospital from August 2004 to July 2014. Cases were patients with severe HFMD disease while controls were age-matched patients obtained from the same year, in a 2:1 ratio. Data comprising demographic characteristics, clinical symptoms and signs, and lab findings were collected. Conditional univariable logistic regression was performed to determine risk factors for severe disease. RESULTS: A total of 24 cases of severe HFMD were identified and matched with 48 controls. Seventeen (70.8 %) cases had central nervous system complications. Seven (29.2 %) had cardiovascular complications without evidence of myocarditis. One patient died of encephalitis. The overall mortality of severe disease is 4 %. Evidence of hypoperfusion, seizure, altered mentation, meningeal irritation, tachycardia, tachypnea, raised absolute neutrophil count and EV-A71 (Enterovirus A71) positivity were significantly associated with a severe course of HFMD. CONCLUSION: In managing children with HFMD, physicians should consider these factors to help identify patients at risk for severe disease

    DNMT3L Modulates Significant and Distinct Flanking Sequence Preference for DNA Methylation by DNMT3A and DNMT3B In Vivo

    Get PDF
    The DNTM3A and DNMT3B de novo DNA methyltransferases (DNMTs) are responsible for setting genomic DNA methylation patterns, a key layer of epigenetic information. Here, using an in vivo episomal methylation assay and extensive bisulfite methylation sequencing, we show that human DNMT3A and DNMT3B possess significant and distinct flanking sequence preferences for target CpG sites. Selection for high or low efficiency sites is mediated by the base composition at the −2 and +2 positions flanking the CpG site for DNMT3A, and at the −1 and +1 positions for DNMT3B. This intrinsic preference reproducibly leads to the formation of specific de novo methylation patterns characterized by up to 34-fold variations in the efficiency of DNA methylation at individual sites. Furthermore, analysis of the distribution of signature methylation hotspot and coldspot motifs suggests that DNMT flanking sequence preference has contributed to shaping the composition of CpG islands in the human genome. Our results also show that the DNMT3L stimulatory factor modulates the formation of de novo methylation patterns in two ways. First, DNMT3L selectively focuses the DNA methylation machinery on properly chromatinized DNA templates. Second, DNMT3L attenuates the impact of the intrinsic DNMT flanking sequence preference by providing a much greater boost to the methylation of poorly methylated sites, thus promoting the formation of broader and more uniform methylation patterns. This study offers insights into the manner by which DNA methylation patterns are deposited and reveals a new level of interplay between members of the de novo DNMT family

    Prognostic significance of HER3 and HER4 protein expression in colorectal adenocarcinomas

    Get PDF
    BACKGROUND: Colorectal cancer remains a major cause of cancer mortality in the Western world. A limited number of studies has been conducted in respect of Her-3 and Her-4 expression and their correlation with clinical parameters and prognosis in colorectal carcinomas . In this study we sought to determine the pattern and the prognostic significance of HER-3 and HER-4 in colorectal adenocarcinoma. METHODS: We studied HER-3 and HER-4 protein expression in106 paraffin embedded specimens of primary colorectal tumors using immunohistochemistry. The pattern and protein expression levels of HER-3 and HER-4 were correlated with several clinical and pathological parameters. RESULTS: HER-3 staining displayed membranous and cytoplasmic expression pattern in 18 (17%) and 30 samples (28,3%), respectively. HER-4 membranous and cytoplasmic expression was found in 20 (18,9%) and 32 samples (30,2%), respectively. Specimens regarded as positive for HER-3 cytoplasmic expression were associated with moderate tumor grade (p = 0,032) and older median age (p = 0,010). Specimens regarded as positive for HER-4 membranous protein expression were associated with involved lymphnodes (p = 0,0003). Similar results were obtained when considering Her-3 and Her-4 protein expression irrespective of their cellular localization. There was no correlation between the expression of HER-3 and HER-4 and patients outcome. CONCLUSION: HER-4 membranous protein expression was found to predict for lymph nodes positivity in this cohort of patients with colorectal cancer.HER-4 expression status may identify tumors with aggressive biological behavior and increased metastatic potential

    Blocking Synthesis of the Variant Surface Glycoprotein Coat in Trypanosoma brucei Leads to an Increase in Macrophage Phagocytosis Due to Reduced Clearance of Surface Coat Antibodies

    Get PDF
    The extracellular bloodstream form parasite Trypanosoma brucei is supremely adapted to escape the host innate and adaptive immune system. Evasion is mediated through an antigenically variable Variant Surface Glycoprotein (VSG) coat, which is recycled at extraordinarily high rates. Blocking VSG synthesis triggers a precytokinesis arrest where stalled cells persist for days in vitro with superficially intact VSG coats, but are rapidly cleared within hours in mice. We therefore investigated the role of VSG synthesis in trypanosome phagocytosis by activated mouse macrophages. T. brucei normally effectively evades macrophages, and induction of VSG RNAi resulted in little change in phagocytosis of the arrested cells. Halting VSG synthesis resulted in stalled cells which swam directionally rather than tumbling, with a significant increase in swim velocity. This is possibly a consequence of increased rigidity of the cells due to a restricted surface coat in the absence of VSG synthesis. However if VSG RNAi was induced in the presence of anti-VSG221 antibodies, phagocytosis increased significantly. Blocking VSG synthesis resulted in reduced clearance of anti-VSG antibodies from the trypanosome surface, possibly as a consequence of the changed motility. This was particularly marked in cells in the G2/ M cell cycle stage, where the half-life of anti-VSG antibody increased from 39.3 ± 4.2 seconds to 99.2 ± 15.9 seconds after induction of VSG RNAi. The rates of internalisation of bulk surface VSG, or endocytic markers like transferrin, tomato lectin or dextran were not significantly affected by the VSG synthesis block. Efficient elimination of anti-VSG-antibody complexes from the trypanosome cell surface is therefore essential for trypanosome evasion of macrophages. These experiments highlight the essentiality of high rates of VSG recycling for the rapid removal of host opsonins from the parasite surface, and identify this process as a key parasite virulence factor during a chronic infection

    Identification of DreI as an Antiviral Factor Regulated by RLR Signaling Pathway

    Get PDF
    BACKGROUND:Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) had been demonstrated to prime interferon (IFN) response against viral infection via the conserved RLR signaling in fish, and a novel fish-specific gene, the grass carp reovirus (GCRV)-induced gene 2 (Gig2), had been suggested to play important role in host antiviral response. METHODOLOGY/PRINCIPAL FINDINGS:In this study, we cloned and characterized zebrafish Gig2 homolog (named Danio rerio Gig2-I, DreI), and revealed its antiviral role and expressional regulation signaling pathway. RT-PCR, Western blot and promoter activity assay indicate that DreI can be induced by poly I:C, spring viremia of carp virus (SVCV) and recombinant IFN (rIFN), showing that DreI is a typical ISG. Using the pivotal signaling molecules of RLR pathway, including RIG-I, MDA5 and IRF3 from crucian carp, it is found that DreI expression is regulated by RLR cascade and IRF3 plays an important role in this regulation. Furthermore, promoter mutation assay confirms that the IFN-stimulated regulatory elements (ISRE) in the 5' flanking region of DreI is essential for its induction. Finally, overexpression of DreI leads to establish a strong antiviral state against SVCV and Rana grylio virus (RGV) infection in EPC (Epithelioma papulosum cyprinid) cells. CONCLUSIONS/SIGNIFICANCE:These data indicate that DreI is an antiviral protein, which is regulated by RLR signaling pathway
    corecore