46 research outputs found

    Association of LMP/TAP Gene Polymorphisms with Tuberculosis Susceptibility in Li Population in China

    Get PDF
    Background: Tuberculosis (TB) is a contagious disease affected by multiple genetic and environmental factors. Several association studies have suggested that cellular immune response is vital for controlling and preventing of tuberculosis infection. Low molecular weight polypeptides (LMPs) and transporters with antigen processing (TAPs) are the main molecules in the processing and presentation pathway for intracellular antigens. This study was performed to elucidate whether these antigen-processing genes (LMP/TAP) polymorphisms could be associated with the risk of tuberculosis infection in China. Methodology/Principal Findings: We recruited 205 active pulmonary tuberculosis patients and 217 normal controls from Li population for this study. Four polymorphisms of LMP/TAP genes were determined by PCR-RFLP assay and haplotypes were constructed by software PHASE 1.0. Of the total four polymorphisms, genotype frequencies of LMP7 AA homozygote and CA heterozygote were significantly greater among cases compared to controls, with odds ratio of 3.77 (95 % CI: 1.60–8.89; P = 0.002) and 2.97 (95 % CI: 1.80–4.90; P,0.0001), respectively. The genotypes of TAP1-2 GG homozygote and AG heterozygote were more frequent in subjects with TB than in controls, with odds ratio of 3.94 (95 % CI: 1.82–8.53; P = 0.001) and 2.87 (95 % CI: 1.75–4.71; P,0.0001), respectively. Similarly, we found that haplotype B which carried LMP7 and TAP1-2 variations significantly increased the susceptibility to TB (OR = 3.674, 95 % CI: 2.254–5.988; P,0.0001). Moreover, it i

    Momordica charantia (bitter melon) inhibits primary human adipocyte differentiation by modulating adipogenic genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Escalating trends of obesity and associated type 2 diabetes (T2D) has prompted an increase in the use of alternative and complementary functional foods. <it>Momordica charantia </it>or bitter melon (BM) that is traditionally used to treat diabetes and complications has been demonstrated to alleviate hyperglycemia as well as reduce adiposity in rodents. However, its effects on human adipocytes remain unknown. The objective of our study was to investigate the effects of BM juice (BMJ) on lipid accumulation and adipocyte differentiation transcription factors in primary human differentiating preadipocytes and adipocytes.</p> <p>Methods</p> <p>Commercially available cryopreserved primary human preadipocytes were treated with and without BMJ during and after differentiation. Cytotoxicity, lipid accumulation, and adipogenic genes mRNA expression was measured by commercial enzymatic assay kits and semi-quantitative RT-PCR (RT-PCR).</p> <p>Results</p> <p>Preadipocytes treated with varying concentrations of BMJ during differentiation demonstrated significant reduction in lipid content with a concomitant reduction in mRNA expression of adipocyte transcription factors such as, peroxisome proliferator-associated receptor γ (PPARγ) and sterol regulatory element-binding protein 1c (SREBP-1c) and adipocytokine, resistin. Similarly, adipocytes treated with BMJ for 48 h demonstrated reduced lipid content, perilipin mRNA expression, and increased lipolysis as measured by the release of glycerol.</p> <p>Conclusion</p> <p>Our data suggests that BMJ is a potent inhibitor of lipogenesis and stimulator of lipolysis activity in human adipocytes. BMJ may therefore prove to be an effective complementary or alternative therapy to reduce adipogenesis in humans.</p

    Caffeine Reduces 11β-Hydroxysteroid Dehydrogenase Type 2 Expression in Human Trophoblast Cells through the Adenosine A2B Receptor

    Get PDF
    Maternal caffeine consumption is associated with reduced fetal growth, but the underlying molecular mechanisms are unknown. Since there is evidence that decreased placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) is linked to fetal growth restriction, we hypothesized that caffeine may inhibit fetal growth partly through down regulating placental 11β-HSD2. As a first step in examining this hypothesis, we studied the effects of caffeine on placental 11β-HSD2 activity and expression using our established primary human trophoblast cells as an in vitro model system. Given that maternal serum concentrations of paraxanthine (the primary metabolite of caffeine) were greater in women who gave birth to small-for-gestational age infants than to appropriately grown infants, we also studied the effects of paraxanthine. Our main findings were: (1) both caffeine and paraxanthine decreased placental 11β-HSD2 activity, protein and mRNA in a concentration-dependent manner; (2) this inhibitory effect was mediated by the adenosine A2B receptor, since siRNA-mediated knockdown of this receptor prevented caffeine- and paraxanthine-induced inhibition of placental 11β-HSD2; and (3) forskolin (an activator of adenyl cyclase and a known stimulator of 11β-HSD2) abrogated the inhibitory effects of both caffeine and paraxanthine, which provides evidence for a functional link between exposure to caffeine and paraxanthine, decreased intracellular levels of cAMP and reduced placental 11β-HSD2. Taken together, these findings reveal that placental 11β-HSD2 is a novel molecular target through which caffeine may adversely affect fetal growth. They also uncover a previously unappreciated role for the adenosine A2B receptor signaling in regulating placental 11β-HSD2, and consequently fetal development

    Modulation of the peripheral blood transcriptome by the ingestion of probiotic yoghurt and acidified milk in healthy, young men

    Get PDF
    The metabolic health benefits of fermented milks have already been investigated using clinical biomarkers but the development of transcriptomic analytics in blood offers an alternative approach that may help to sensitively characterise such effects. We aimed to assess the effects of probiotic yoghurt intake, compared to non-fermented, acidified milk intake, on clinical biomarkers and gene expression in peripheral blood. To this end, a randomised, crossover study was conducted in fourteen healthy, young men to test the two dairy products. For a subset of seven subjects, RNA sequencing was used to measure gene expression in blood collected during postprandial tests and after two weeks daily intake. We found that the postprandial response in insulin was different for probiotic yoghurt as compared to that of acidified milk. Moreover changes in several clinical biomarkers were associated with changes in the expression of genes representing six metabolic genesets. Assessment of the postprandial effects of each dairy product on gene expression by geneset enrichment analysis revealed significant, similar modulation of inflammatory and glycolytic genes after both probiotic yoghurt and acidified milk intake, although distinct kinetic characteristics of the modulation differentiated the dairy products. The aryl hydrocarbon receptor was a major contributor to the down-regulation of the inflammatory genesets and was also positively associated with changes in circulating insulin at 2h after yoghurt intake (p = 0.05). Daily intake of the dairy products showed little effect on the fasting blood transcriptome. Probiotic yoghurt and acidified milk appear to affect similar gene pathways during the postprandial phase but differences in the timing and the extent of this modulation may lead to different physiological consequences. The functional relevance of these differences in gene expression is supported by their associations with circulating biomarkers
    corecore