46 research outputs found

    Upregulation of Hemoglobin Expression by Oxidative Stress in Hepatocytes and Its Implication in Nonalcoholic Steatohepatitis

    Get PDF
    Recent studies revealed that hemoglobin is expressed in some non-erythrocytes and it suppresses oxidative stress when overexpressed. Oxidative stress plays a critical role in the pathogenesis of non-alcoholic steatohepatitis (NASH). This study was designed to investigate whether hemoglobin is expressed in hepatocytes and how it is related to oxidative stress in NASH patients. Analysis of microarray gene expression data revealed a significant increase in the expression of hemoglobin alpha (HBA1) and beta (HBB) in liver biopsies from NASH patients. Increased hemoglobin expression in NASH was validated by quantitative real time PCR. However, the expression of hematopoietic transcriptional factors and erythrocyte specific marker genes were not increased, indicating that increased hemoglobin expression in NASH was not from erythropoiesis, but could result from increased expression in hepatocytes. Immunofluorescence staining demonstrated positive HBA1 and HBB expression in the hepatocytes of NASH livers. Hemoglobin expression was also observed in human hepatocellular carcinoma HepG2 cell line. Furthermore, treatment with hydrogen peroxide, a known oxidative stress inducer, increased HBA1 and HBB expression in HepG2 and HEK293 cells. Importantly, hemoglobin overexpression suppressed oxidative stress in HepG2 cells. We concluded that hemoglobin is expressed by hepatocytes and oxidative stress upregulates its expression. Suppression of oxidative stress by hemoglobin could be a mechanism to protect hepatocytes from oxidative damage in NASH

    Background Coloration of Squamous Epithelium in Esophago-Pharyngeal Squamous Cell Carcinoma: What Causes the Color Change?

    Get PDF
    Objectives: This study aims to clarify the cause of background coloration in the epithelia between each dilated intra papillary capillary loop in esophago-pharyngeal squamous cell carcinoma. Design: This is a single center retrospective study including 124 patients with 160 lesions who underwent esophagogastroduodenoscopy in Nagasaki University Hospital from September 2007 to March 2012; a detailed comparison between endoscopic images and pathology was performed. Immunohistological assessment using anti-human hemoglobin antibody (anti-Hb Ab) was performed to verify the presence of hemoglobin (Hb) component in the cancer cells. Real-time polymerase chain reaction (RT-PCR) and in situ hybridization (ISH) on Hb-β mRNA were performed to assess the production of Hb component within the cancer cells. Results: A strong positivity for anti-Hb Ab was observed in the squamous cell carcinoma area, whereas non-cancerous mucosa showed no immunopositivity for Hb. The concordance rate between anti-Hb Ab immunoreactivity and the presence of BC was as high as 80.9%. The amount of Hb-β mRNA expression was three times higher in cancer tissues compared with the surrounding non-cancerous mucosa. ISH images showed that the expression exclusively occurred in cancer cells, indicating that Hb is probably produced within cancer cells. Conclusions: The background coloration observed is partly due to an extravascular component of Hb. RT-PCR and ISH analyses indicate that Hb is produced within cancer cells

    Integrated high-content quantification of intracellular ROS levels and mitochondrial morphofunction

    Get PDF
    Oxidative stress arises from an imbalance between the production of reactive oxygen species (ROS) and their removal by cellular antioxidant systems. Especially under pathological conditions, mitochondria constitute a relevant source of cellular ROS. These organelles harbor the electron transport chain, bringing electrons in close vicinity to molecular oxygen. Although a full understanding is still lacking, intracellular ROS generation and mitochondrial function are also linked to changes in mitochondrial morphology. To study the intricate relationships between the different factors that govern cellular redox balance in living cells, we have developed a high-contentmicroscopy-based strategy for simultaneous quantification of intracellular ROS levels and mitochondrial morphofunction. Here, we summarize the principles of intracellular ROS generation and removal, and we explain the major considerations for performing quantitative microscopy analyses of ROS and mitochondrial morphofunction in living cells. Next, we describe our workflow, and finally, we illustrate that a multiparametric readout enables the unambiguous classification of chemically perturbed cells as well as laminopathy patient cells

    Impact of intracellular ion channels on cancer development and progression

    Get PDF

    Tumour cells on neighbourhood watch

    No full text

    Bridging the gap to therapeutic strategies based on connexin/pannexin biology

    No full text
    A unique workshop was recently held focusing on enhancing collaborations leading to identify and update the development of therapeutic strategies targeting connexin/pannexin large pore channels. Basic scientists exploring the functions of these channels in various pathologies gathered together with leading pharma companies which are targeting gap junction proteins for specific therapeutic applications. This highlights how paths of discovery research can converge with therapeutic strategies in innovative ways to enhance target identification and validation
    corecore