4,589 research outputs found

    Wear of knee prostheses

    Get PDF
    This paper describes how three different unique design solutions for artificial knee joints each provide extremely low wear and the potential for a 50-year osteolysis-free lifetime in high-demand patients. Each of the three low-wearing prosthetic design solutions provides a different and distinctive functional solution for the patient and surgeon

    The influence of clearance on friction, lubrication and squeaking in large diameter metal-on-metal hip replacements

    Get PDF
    Large diameter metal-on-metal bearings (MOM) are becoming increasingly popular, addressing the needs of young and more active patients. Clinical data has shown excellent short-to-mid-term results, though incidences of transient squeaking have been noted between implantation and up to 2 years post-operative. Geometric design features, such as clearance, have been significant in influencing the performance of the bearings. Sets of MOM bearings with different clearances were investigated in this study using a hip friction simulator to examine the influence of clearance on friction, lubrication and squeaking. The friction factor was found to be highest in the largest clearance bearings under all test conditions. The incidence of squeaking was also highest in the large clearance bearings, with all bearings in this group squeaking throughout the study. A very low incidence of squeaking was observed in the other two clearance groups. The measured lubricating film was found to be lowest in the large clearance bearings. This study suggests that increasing the bearing clearance results in reduced lubricant film thickness, increased friction and an increased incidence of squeaking

    PEEK and CFR-PEEK as alternative bearing materials to UHMWPE in a fixed bearing total knee replacement: An experimental wear study

    Get PDF
    New bearing materials for total joint replacement have been explored as the need to improve longevity and enhance performance is driven by the changing demands of the patient demographic. Carbon-reinforced PEEK has demonstrated good wear characteristics in experimental wear simulation in both simple geometry pin-on-plate studies and in total hip joint replacement. Carbon reinforced PEEK CFR-PEEK has the potential to reduce tibial insert thickness and preserve bone in the knee. This study investigated the wear performance of PEEK and CFR-PEEK in a low conformity total knee replacement configuration. Custom-made flat inserts were tested against cobalt-chromium femoral bearings in a knee wear simulation for a period of three million cycles. Wear was assessed gravimetrically at intervals throughout the study. The wear rates of both PEEK and CFR-PEEK were very high and almost two orders of magnitude higher than the wear rate of UHMWPE under comparable conditions. Evidence of mechanical failure of the materials, including surface cracking and delamination was observed in both materials. This study highlights that these materials may not be suitable alternatives for UHMWPE in low-conformity designs

    Quantification of the effect of cross-shear and applied nominal contact pressure on the wear of moderately cross-linked polyethylene

    Get PDF
    Polyethylene wear is a great concern in total joint replacement. It is now considered a major limiting factor to the long life of such prostheses. Cross-linking has been introduced to reduce the wear of ultra-high-molecular-weight polyethylene (UHMWPE). Computational models have been used extensively for wear prediction and optimization of artificial knee designs. However, in order to be independent and have general applicability and predictability, computational wear models should be based on inputs from independent experimentally determined wear parameters (wear factors or wear coefficients). The objective of this study was to investigate moderately cross-linked UHMWPE, using a multidirectional pin-on-plate wear test machine, under a wide range of applied nominal contact pressure (from 1 to 11 MPa) and under five different kinematic inputs, varying from a purely linear track to a maximum rotation of ±55°. A computational model, based on a direct simulation of the multidirectional pin-on-plate wear tester, was developed to quantify the degree of cross-shear (CS) of the polyethylene pins articulating against the metallic plates. The moderately cross-linked UHMWPE showed wear factors less than half of that reported in the literature for the conventional UHMWPE, under the same loading and kinematic inputs. In addition, under high applied nominal contact stress, the moderately cross-linked UHMWPE wear showed lower dependence on the degree of CS compared to that under low applied nominal contact stress. The calculated wear coefficients were found to be independent of the applied nominal contact stress, in contrast to the wear factors that were shown to be highly pressure dependent. This study provided independent wear data for inputs into computational models for moderately cross-linked polyethylene and supported the application of wear coefficient–based computational wear models

    Timely and reliable evaluation of the effects of interventions: a framework for adaptive meta-analysis (FAME)

    Get PDF
    Most systematic reviews are retrospective and use aggregate data AD) from publications, meaning they can be unreliable, lag behind therapeutic developments and fail to influence ongoing or new trials. Commonly, the potential influence of unpublished or ongoing trials is overlooked when interpreting results, or determining the value of updating the meta-analysis or need to collect individual participant data (IPD). Therefore, we developed a Framework for Adaptive Metaanalysis (FAME) to determine prospectively the earliest opportunity for reliable AD meta-analysis. We illustrate FAME using two systematic reviews in men with metastatic (M1) and non-metastatic (M0)hormone-sensitive prostate cancer (HSPC)

    An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers.

    Get PDF
    Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors

    Wear of moderately cross-linked polyethylene in fixed-bearing total knee replacements

    Get PDF
    Cross-linked polyethylene has been introduced into total joint replacement to improve wear resistance. Although the performance of highly cross-linked polyethylene is well documented clinically and experimentally for total hip replacements, the reduction in mechanical properties with increasing irradiation is of concern for application to total knee replacement. The aim of this study was to investigate the wear performance of a moderately cross-linked polyethylene material in a fixed-bearing total knee replacement. The study was conducted using two femoral geometries, a conventional cruciate-retaining femoral and a high-flexion femoral geometry. The femoral geometry appeared to have no effect on the wear of the knee replacement under standard gait conditions. A significant reduction in wear volume was measured with the moderately cross-linked polyethylene compared with the conventional polyethylene over a six-million-cycle wear study. This study indicates the use of a moderately cross-linked polyethylene in a fixed-bearing total knee replacement may provide a low wearing option for total knee replacement

    Fate of the Josephson effect in thin-film superconductors

    Full text link
    The dc Josephson effect refers to the dissipationless electrical current -- the supercurrent -- that can be sustained across a weak link connecting two bulk superconductors. This effect is a probe of the fundamental nature of the superconducting state. Here, we analyze the case of two superconducting thin films connected by a point contact. Remarkably, the Josephson effect is absent at nonzero temperature, and the resistance across the contact is nonzero. Moreover, the point contact resistance is found to vary with temperature in a nearly activated fashion, with a UNIVERSAL energy barrier determined only by the superfluid stiffness characterizing the films, an angle characterizing the geometry, and whether or not the Coulomb interaction between Cooper pairs is screened. This behavior reflects the subtle nature of the superconductivity in two-dimensional thin films, and should be testable in detail by future experiments.Comment: 16 + 8 pages. 1 figure, 1 tabl

    A comparison of friction in 28 mm conventional and 55 mm resurfacing metal-on-metal hip replacements

    Get PDF
    Total hip replacement has been a common, successful surgical intervention for many years. However, it has long been considered unsatisfactory for younger, more active patients due to the limited survivorship of conventional implants employing polyethylene. Larger resurfacing implants were developed to preserve bone stock and improve stability, however, early metal-on-polyethylene implants failed due to high wear. More recent developments, utilizing a metal-on-metal bearing, have encouraging short- to medium-term clinical performance. Concerns exist regarding the increased sliding distance and frictional torque generated within a larger diameter bearing. A large diameter metal-on-metal surface replacement was contrasted with a conventional 28 mm diameter implant with the same bearing material combination using a pendulum friction simulator. Studies were performed under different swing-phase load and lubrication conditions. The larger diameter bearing exhibited the lower friction factor under all test conditions, although the measured frictional torque was higher. Increasing swing-phase load was shown to cause an increase in friction factor in all tests. Increased serum concentration resulted in a reduction in friction factor for both bearings. Variation of the friction factor with the head diameter suggested that fluid-film lubrication contributed to the reduction of friction
    • …
    corecore