7 research outputs found

    Three options for citation tracking: Google Scholar, Scopus and Web of Science

    Get PDF
    BACKGROUND: Researchers turn to citation tracking to find the most influential articles for a particular topic and to see how often their own published papers are cited. For years researchers looking for this type of information had only one resource to consult: the Web of Science from Thomson Scientific. In 2004 two competitors emerged – Scopus from Elsevier and Google Scholar from Google. The research reported here uses citation analysis in an observational study examining these three databases; comparing citation counts for articles from two disciplines (oncology and condensed matter physics) and two years (1993 and 2003) to test the hypothesis that the different scholarly publication coverage provided by the three search tools will lead to different citation counts from each. METHODS: Eleven journal titles with varying impact factors were selected from each discipline (oncology and condensed matter physics) using the Journal Citation Reports (JCR). All articles published in the selected titles were retrieved for the years 1993 and 2003, and a stratified random sample of articles was chosen, resulting in four sets of articles. During the week of November 7–12, 2005, the citation counts for each research article were extracted from the three sources. The actual citing references for a subset of the articles published in 2003 were also gathered from each of the three sources. RESULTS: For oncology 1993 Web of Science returned the highest average number of citations, 45.3. Scopus returned the highest average number of citations (8.9) for oncology 2003. Web of Science returned the highest number of citations for condensed matter physics 1993 and 2003 (22.5 and 3.9 respectively). The data showed a significant difference in the mean citation rates between all pairs of resources except between Google Scholar and Scopus for condensed matter physics 2003. For articles published in 2003 Google Scholar returned the largest amount of unique citing material for oncology and Web of Science returned the most for condensed matter physics. CONCLUSION: This study did not identify any one of these three resources as the answer to all citation tracking needs. Scopus showed strength in providing citing literature for current (2003) oncology articles, while Web of Science produced more citing material for 2003 and 1993 condensed matter physics, and 1993 oncology articles. All three tools returned some unique material. Our data indicate that the question of which tool provides the most complete set of citing literature may depend on the subject and publication year of a given article

    Thermo-Mixed Hydrodynamics of Piston Compression Ring Conjunction

    Get PDF
    The final publication is available at http://link.springer.com.A new method, comprising Navier-Stokes equations, Rayleigh-Plesset volume fraction equation, an analytical control-volume thermal mixed approach and asperity interactions is reported. The method is employed for prediction of lubricant flow and assessment of friction in the compression ring-cylinder liner conjunction. The results are compared with Reynolds-based laminar flow with Elrod cavitation algorithm. Good conformance is observed for medium load intensity part of the engine cycle. At lighter loads and higher sliding velocity, the new method shows more complex fluid flow, possessing layered flow characteristics on account of pressure and temperature gradient into the depth of the lubricant film, which leads to a cavitation region with vapour content at varied volume fractions. Predictions also conform well to experimental measurements reported by other authors

    Deciphering the role of coumarin as a novel quorum sensing inhibitor suppressing virulence phenotypes in bacterial pathogens

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. The rapid unchecked rise in antibiotic resistance over the last few decades has led to an increased focus on the need for alternative therapeutic strategies for the treatment and clinical management of microbial infections. In particular, small molecules that can suppress microbial virulence systems independent of any impact on growth are receiving increased attention. Quorum sensing (QS) is a cell-to-cell signalling communication system that controls the virulence behaviour of a broad spectrum of bacterial pathogens. QS systems have been proposed as an effective target, particularly as they control biofilm formation in pathogens, a key driver of antibiotic ineffectiveness. In this study, we identified coumarin, a natural plant phenolic compound, as a novel QS inhibitor, with potent anti-virulence activity in a broad spectrum of pathogens. Using a range of biosensor systems, coumarin was active against short, medium and long chain N-acyl-homoserine lactones, independent of any effect on growth. To determine if this suppression was linked to anti-virulence activity, key virulence systems were studied in the nosocomial pathogen Pseudomonas aeruginosa. Consistent with suppression of QS, coumarin inhibited biofilm, the production of phenazines and swarming motility in this organism potentially linked to reduced expression of the rhlI and pqsA quorum sensing genes. Furthermore, coumarin significantly inhibited biofilm formation and protease activity in other bacterial pathogens and inhibited bioluminescence in Aliivibrio fischeri. In light of these findings, coumarin would appear to have potential as a novel quorum sensing inhibitor with a broad spectrum of action

    Results of Structural Analyses by LEED

    No full text
    corecore