16 research outputs found

    Nodes of Ranvier and Paranodes in Chronic Acquired Neuropathies

    Get PDF
    Chronic acquired neuropathies of unknown origin are classified as chronic inflammatory demyelinating polyneuropathies (CIDP) and chronic idiopathic axonal polyneuropathies (CIAP). The diagnosis can be very difficult, although it has important therapeutic implications since CIDP can be improved by immunomodulating treatment. The aim of this study was to examine the possible abnormalities of nodal and paranodal regions in these two types of neuropathies. Longitudinal sections of superficial peroneal nerves were obtained from biopsy material from 12 patients with CIDP and 10 patients with CIAP and studied by immunofluorescence and in some cases electron microscopy. Electron microscopy revealed multiple alterations in the nodal and paranodal regions which predominated in Schwann cells in CIDP and in axons in CIAP. In CIDP paranodin/Caspr immunofluorescence was more widespread than in control nerves, extending along the axon in internodes where it appeared intense. Nodal channels Nav and KCNQ2 were less altered but were also detected in the internodes. In CIAP paranodes, paranodin labeling was irregular and/or decreased. To test the consequences of acquired primary Schwann cells alteration on axonal proteins, we used a mouse model based on induced deletion of the transcription factor Krox-20 gene. In the demyelinated sciatic nerves of these mice we observed alterations similar to those found in CIDP by immunofluorescence, and immunoblotting demonstrated increased levels of paranodin. Finally we examined whether the alterations in paranodin immunoreactivity could have a diagnosis value. In a sample of 16 biopsies, the study of paranodin immunofluorescence by blind evaluators led to correct diagnosis in 70±4% of the cases. This study characterizes for the first time the abnormalities of nodes of Ranvier in CIAP and CIDP, and the altered expression and distribution of nodal and paranodal proteins. Marked differences were observed between CIDP and CIAP and the alterations in paranodin immunofluorescence may be an interesting tool for their differential diagnosis

    Tolerance of chronic hypercapnia by the European eel Anguilla anguilla.

    Get PDF
    European eels were exposed for 6 weeks to water CO2 partial pressures (PCO\ub7) from ambient (approx.0.8\ub7mmHg), through 15\ub11\ub7mmHg and 30\ub11\ub7mmHg to 45\ub11\ub7mmHg in water with a total hardness of240\ub7mg\ub7l\u20131 as CaCO3, pH 8.2, at 23\ub11\ub0C. Arterial plasma PCO\ub7 equilibrated at approximately 2\ub7mmHg above water PCO\ub7 in all groups, and plasma bicarbonate accumulated up to 72\ub7mmol\ub7l\u20131 in the group at a water PCO\ub7 of 45\ub7mmHg. This was associated with an equimolar loss of plasma Cl\u2013, which declined to 71\ub7mmol\ub7l\u20131 at the highest water PCO\ub7. Despite this, extracellular acid\u2013base compensation was incomplete; all hypercapnic groups tolerated chronic extracellular acidoses and reductions in arterial blood O2 content (CaO\ub7), of progressive severity with increasing PCO\ub7. All hypercapnic eels, however, regulated the intracellular pH of heart and white muscle to the same levels as normocapnic animals. Hypercapnia had no effect on such indicators of stress as plasma catecholamine or cortisol levels, plasma osmolality or standard metabolic rate. Furthermore, although CaO\ub7 was reduced by approximately 50% at the highest PCO\ub7, there was no effect of hypercapnia on the eels\u2019 tolerance of hypoxia, aerobic metabolic scope or sustained swimming performance. The results indicate that, at the levels tested, chronic hypercapnia was not a physiological stress for the eel, which can tolerate extracellular acidosis and extremely low Cl\u2013 levels while compensating tissue intracellular pH, and which can meet the O2 requirements of routine and active metabolism despite profound hypoxaemia

    The influence of dietary fatty acid composition on the respiratory and cardiovascular physiology of Adriatic sturgeon (Acipenser naccarii): A review

    No full text

    Establishment of primary cell cultures from fish calcified tissues

    No full text
    Fishes have been recently recognized as a suitable model organism to study vertebrate physiological processes, in particular skeletal development and tissue mineralization. However, there is a lack of well characterized in vitro cell systems derived from fish calcified tissues. We describe here a protocol that was successfully used to develop the first calcified tissue-derived cell cultures of fish origin. Vertebra and branchial arches collected from young gilthead seabreams were fragmented then submitted to the combined action of collagenase and trypsin to efficiently release cells embedded in the collagenous extracellular matrix. Primary cultures were maintained under standard conditions and spontaneously transformed to form continuous cell lines suitable for studying mechanisms of tissue mineralization in seabream. This simple and inexpensive protocol is also applicable to other calcified tissues and species by adjusting parameters to each particular case
    corecore