22 research outputs found

    ATP-dependent chromatin remodeling shapes the DNA replication landscape.

    Get PDF
    The eukaryotic DNA replication machinery must traverse every nucleosome in the genome during S phase. As nucleosomes are generally inhibitory to DNA-dependent processes, chromatin structure must undergo extensive reorganization to facilitate DNA synthesis. However, the identity of chromatin-remodeling factors involved in replication and how they affect DNA synthesis is largely unknown. Here we show that two highly conserved ATP-dependent chromatin-remodeling complexes in Saccharomyces cerevisiae, Isw2 and Ino80, function in parallel to promote replication fork progression. As a result, Isw2 and Ino80 have especially important roles for replication of late-replicating regions during periods of replication stress. Both Isw2 and Ino80 complexes are enriched at sites of replication, suggesting that these complexes act directly to promote fork progression. These findings identify ATP-dependent chromatin-remodeling complexes that promote DNA replication and define a specific stage of replication that requires remodeling for normal function

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    Chemical synthesis of a fluorescent IGF-II analogue

    No full text
    Insulin-like growth factor II (IGF-II) is a protein with high structural and sequence similarity to insulin. Unlike insulin, it binds both the type 1 IGF receptor and the exon 11- isoform of the insulin receptor with high affinity. The overexpression and up regulation of IGF-II has been associated with the progression of various forms of cancer. The exact binding mechanism of IGF-II to its high affinity receptors is still not completely understood. Herein we describe the successful synthesis of a novel fluorescent IGF-II protein (F19Cou IGF-II), where residue 19 (phenylalanine) has been replaced by a fluorescent chromophore (coumaryl glycine). This novel coumaryl IGF-II analogue will be a useful tool for analysing the receptor interaction mechanisms in future studies.Jade M. Cottam, Denis B. Scanlon, John A. Karas, Antonio N. Calabrese, Tara L. Pukala, Briony E. Forbes, John C. Wallace, Andrew D. Abel
    corecore