14 research outputs found

    Suppression of tumorigenesis and metastasis of hepatocellular carcinoma by shRNA interference targeting on homeoprotein Six1

    Get PDF
    We previously demonstrated that the overexpression of homeoprotein Six1 in hepatocellular carcinoma (HCC) patients is associated with venous infiltration, advanced pathologic tumor metastasis (pTNM) stage and poor overall survival rate (Ng et al. Br J Cancer 2006;95:1050-5). In this study, short hairpin RNA (shRNA) interference approach was used to suppress the expression of Six1 in a metastatic HCC cell line MHCC97L. Stable transfectant MHCC97L-shSix1 carrying Six1-specific shRNA plasmid was established to downregulate Six1 expression to about 40% when compared with MHCC97L-Control. In vitro functional assays demonstrated that the growth rate and proliferation ability of MHCC97L-shSix1 cells were markedly decreased. Moreover, significant decrease of cell motility and invasiveness were observed in MHCC97L-shSix1 cells. Data from in vivo xenograft tumorigenesis model demonstrated that the size of tumor in MHCC97L-shSix1 group was dramatically reduced. Experimental and spontaneous metastasis models indicated that targeting Six1 suppression noticeably reduced the pulmonary metastasis in MHCC97L-shSix1 group. To identify Six1-regulated targets, cDNA microarray was employed to compare the expression profiles of MHCC97L-Control and MHCC97L-shSix1 cells. Twenty-eight downregulated and 24 upregulated genes with known functions were identified in MHCC97L-shSix1. The functions of these target genes are involved in diverse biological activities. Our data suggest that Six1 may be involved in regulation of proliferation and invasiveness of HCC; thus targeting suppression of Six1 is a viable option for treating HCC patients. © 2009 UICC.postprin

    Suppression of liver tumor growth and metastasis by adiponectin in nude mice through inhibition of tumor angiogenesis and downregulation of rho kinase/IFN-inducible protein 10/matrix metalloproteinase 9 signaling

    Get PDF
    Purpose: We aimed to investigate the effects of adiponectin on liver cancer growth and metastasis and explore the underlying mechanisms. Experimental Design: An orthotopic liver tumor nude mice model with distant metastatic potential was applied. Either Ad-adiponectin (1 × 10 8; treatment group) or Ad-luciferase (control group) was injected via portal vein after tumor implantation. Tumor growth and metastasis were monitored by Xenogen In vivo Imaging System. Hepatic stellate cell activation by α-smooth muscle actin staining, microvessel density by CD34 staining, macrophage infiltration in tumor tissue, and cell signaling leading to invasion, migration [Rho kinase (ROCK), IFN-inducible protein 10 (IP10), and matrix metalloproteinase 9], and angiogenesis [vascular endothelial growth factor (VEGF) and angiopoietin 1] were also compared. Tumor-nontumor margin was examined under electron microscopy. Direct effects of adiponectin on liver cancer cells and endothelial cells were further investigated by a series of functional studies. Results: Tumor growth was significantly inhibited by adiponectin treatment, accompanied by a lower incidence of lung metastasis. Hepatic stellate cell activation and macrophage infiltration in the liver tumors were suppressed by adiponectin treatment, along with decreased microvessel density. The treatment group had less Ki-67-positive tumor cells and downregulated protein expression of ROCK1, proline-rich tyrosine kinase 2, and VEGF. Tumor vascular endothelial cell damage was found in the treatment group under electron microscopy. In vitro functional study showed that adiponectin not only downregulated the ROCK/IP10/VEGF signaling pathway but also inhibited the formation of lamellipodia, which contribute to cell migration. Conclusion: Adiponectin treatment significantly inhibited liver tumor growth and metastasis by suppression of tumor angiogenesis and downregulation of the ROCK/IP10/matrix metalloproteinase 9 pathway. ©2010 AACR.postprin

    The role of leadership in salespeople’s price negotiation behavior

    Get PDF
    Salespeople assume a key role in defending firms’ price levels in price negotiations with customers. The degree to which salespeople defend prices should critically depend upon their leaders’ influence. However, the influence of leadership on salespeople’s price defense behavior is barely understood, conceptually or empirically. Therefore, building on social learning theory, the authors propose that salespeople might adopt their leaders’ price defense behavior given a transformational leadership style. Furthermore, drawing on the contingency leadership perspective, the authors argue that this adoption fundamentally depends on three variables deduced from the motivation–ability–opportunity (MAO) framework, that is, salespeople’s learning motivation, negotiation efficacy, and perceived customer lenience. Results of a multi-level model using data from 92 salespeople and 264 salesperson–customer interactions confirm these predictions. The first to explore contingencies of salespeople’s adoption of their transformational leaders’ price negotiation behaviors, this study extends marketing theory and provides actionable guidance to practitioners

    Molecular signature linked to acute phase injury and tumor invasiveness in small-for-size liver grafts

    No full text
    Objective: We aimed to explore the precise molecular mechanism of early and invasive tumor growth in a small-for-size graft after liver transplantation and to identify the distinct molecular signature linked to acute-phase injury and late-phase tumor invasiveness. Summary background data: Acute phase small-for-size liver graft injury plays an important role in tumor recurrence after liver transplantation. For prevention of such recurrence, understanding of its underlying mechanism will be important in developing novel therapeutic strategies. Methods: An orthotopic rat liver transplantation model was applied using whole grafts and small-for-size (50%) grafts. The recipients were injected with hepatoma cell lines via the portal vein to mimic tumor recurrence after liver transplantation. Tumor invasive properties were compared between the tumor developed from small and whole graft. Gene signatures of acute phase graft injury (days 1 and 3) and late phase tumor recurrence (days 14 and 21) were screened using cDNA microarray analysis and further confirmed by quantitative RT-PCR. The potential gene candidate CXCL10 was singled out for further functional studies to investigate its role in tumor progression. Results: A number of genes linked to inflammatory responses and tumor invasiveness were found over-expressed in small-for-size liver grafts and/or tumors developed in small liver grafts by cDNA microarray screening. Real-time RT-PCR also confirmed that the gene CXCL10 was over-expressed not only in small-for-size graft at the early phase, but also in tumor from small-for-size graft at the late phase after liver transplantation. In vitro functional studies further confirmed that CXCL10 promoted tumor-invasion-related properties and tumor-associated macrophage activation. Conclusion: CXCL10 over-expression, the distinct gene signature of acute-phase graft injury and tumor invasiveness in small-for-size liver grafts, may contribute to early tumor recurrence after liver transplantation. CXCL10 and its downstream signals may be potential therapeutic targets in the prevention of tumor recurrence after liver transplantation using small-for-size graft. © 2010 Lippincott Williams & Wilkins.link_to_subscribed_fulltex

    A four-phase model of transdisciplinary team-based research: goals, team processes, and strategies

    No full text
    The complexity of social and public health challenges has led to burgeoning interest and investments in cross-disciplinary team-based research, and particularly in transdisciplinary (TD) team-based research. TD research aims to integrate and ultimately extend beyond discipline-specific concepts, approaches, and methods to accelerate innovations and progress toward solving complex real-world problems. While TD research offers the promise of novel, wide-reaching, and important discoveries, it also introduces unique challenges. In particular, today's investigators are generally trained in unidisciplinary approaches and may have little training in, or exposure to, the scientific skills and team processes necessary to collaborate successfully in teams of colleagues from widely disparate disciplines and fields. Yet these skills are essential to maximize the efficiency and effectiveness of TD team-based research. In the current article, we propose a model of TD team-based research that includes four relatively distinct phases: development, conceptualization, implementation, and translation. Drawing on the science of team science field, as well as the findings from previous research on group dynamics and organizational behavior, we identify key scientific goals and team processes that occur in each phase and across multiple phases. We then provide real-world exemplars for each phase that highlight strategies for successfully meeting the goals and engaging in the team processes that are hallmarks of that phase. We conclude by discussing the relevance of the model for TD team-based research initiatives, funding to support these initiatives, and future empirical research that aims to better understand the processes and outcomes of TD team-based research
    corecore