1,122 research outputs found
Transporting audio over wireless ad hoc networks: Experiments & new insights
Current efforts on ad hoc wireless network research are focused more on routing and multicasting protocols. However, there is an increasing need to understand what sort of media could be transported over wireless ad hoc networks other than data. Existing research on multimedia wireless communications often addresses broadband wireless networks with a connection-oriented backbone. In this paper, we address the possibility of transporting audio traffic over wireless ad hoc networks. We examine the impact of wireless multi-hop links on audio data relay and how the audio quality at the receiver is affected. In particular, we examine communication parameters such as latency, jitter, packet loss, and their impact on perceived audio quality. ©2003 IEEE.published_or_final_versio
Cardiac Myosin Binding Protein C and MAP-Kinase Activating Death Domain-Containing Gene Polymorphisms and Diastolic Heart Failure
OBJECTIVE: Myosin binding protein C (MYBPC3) plays a role in ventricular relaxation. The aim of the study was to investigate the association between cardiac myosin binding protein C (MYBPC3) gene polymorphisms and diastolic heart failure (DHF) in a human case-control study. METHODS: A total of 352 participants of 1752 consecutive patients from the National Taiwan University Hospital and its affiliated hospital were enrolled. 176 patients diagnosed with DHF confirmed by echocardiography were recruited. Controls were matched 1-to-1 by age, sex, hypertension, diabetes, renal function and medication use. We genotyped 12 single nucleotide polymorphisms (SNPs) according to HapMap Han Chinese Beijing databank across a 40 kb genetic region containing the MYBPC3 gene and the neighboring DNA sequences to capture 100% of haplotype variance in all SNPs with minor allele frequencies ≥ 5%. We also analyzed associations of these tagging SNPs and haplotypes with DHF and linkage disequilibrium (LD) structure of the MYBPC3 gene. RESULTS: In a single locus analysis, SNP rs2290149 was associated with DHF (allele-specific p = 0.004; permuted p = 0.031). The SNP with a minor allele frequency of 9.4%, had an odds ratio 2.14 (95% CI 1.25-3.66; p = 0.004) for the additive model and 2.06 for the autosomal dominant model (GG+GA : AA, 95% CI 1.17-3.63; p = 0.013), corresponding to a population attributable risk fraction of 12.02%. The haplotypes in a LD block of rs2290149 (C-C-G-C) was also significantly associated with DHF (odds ratio 2.10 (1.53-2.89); permuted p = 0.029). CONCLUSIONS: We identified a SNP (rs2290149) among the tagging SNP set that was significantly associated with early DHF in a Chinese population
The effect of posterior capsule repair upon post-operative hip dislocation following primary total hip arthroplasty
<p>Abstract</p> <p>Background</p> <p>Herein, we evaluated, retrospectively, the effect of posterior capsular repair upon postoperative hip dislocation subsequent to total hip arthroplasty (THA) incorporating a posterolateral approach.</p> <p>Methods</p> <p>A total of 181 patients undergoing 204 primary non-complicated THA surgical procedures in the period from January 2000 to October 2005 inclusively were included in this study. The patients were separated into two groups by whether the posterior capsular repair had been incorporated in the surgical procedure. For the surgeon did not commence repairing the posterior capsule until July, 2003, all members in the group that did not undergo posterior capsular repair (142 hips from 131 patients) were collected since January, 2000 to July, 2003, while the members in the group that underwent posterior capsular repair (62 hips from 52 patients) were followed since July, 2003, to October, 2005. With a minimum follow-up period of 12 months, we evaluated the early post-operative dislocation rate.</p> <p>Results</p> <p>The early postoperative hip-dislocation rate for the group who did not undergo posterior capsular repair appeared to be substantially greater (6.38% versus 0%) than the corresponding figure for the group the members of which underwent posterior capsular repair. In addition, patient demographics and the orientation of acetabular components for the replaced hip joints, as presented in postoperative radiographs, did not differ between the two groups.</p> <p>Conclusion</p> <p>Thus, surgeons should include posterior capsular repair as an important step in the surgical procedures of posterolateral approach for all THA in order to reduce the likelihood of early hip dislocation subsequent to THA.</p
New "light" for one-world approach toward safe and effective control of animal diseases and insect vectors from leishmaniac perspectives
Light is known to excite photosensitizers (PS) to produce cytotoxic reactive oxygen species (ROS) in the presence of oxygen. This modality is attractive for designing control measures against animal diseases and pests. Many PS have a proven safety record. Also, the ROS cytotoxicity selects no resistant mutants, unlike other drugs and pesticides. Photodynamic therapy (PDT) refers to the use of PS as light activable tumoricides, microbicides and pesticides in medicine and agriculture.Here we describe "photodynamic vaccination" (PDV) that uses PDT-inactivation of parasites, i.e. Leishmania as whole-cell vaccines against leishmaniasis, and as a universal carrier to deliver transgenic add-on vaccines against other infectious and malignant diseases. The efficacy of Leishmania for vaccine delivery makes use of their inherent attributes to parasitize antigen (vaccine)-presenting cells. Inactivation of Leishmania by PDT provides safety for their use. This is accomplished in two different ways: (i) chemical engineering of PS to enhance their uptake, e.g. Si-phthalocyanines; and (ii) transgenic approach to render Leishmania inducible for porphyrinogenesis. Three different schemes of Leishmania-based PDV are presented diagrammatically to depict the cellular events resulting in cell-mediated immunity, as seen experimentally against leishmaniasis and Leishmania-delivered antigen in vitro and in vivo. Safety versus efficacy evaluations are under way for PDT-inactivated Leishmania, including those further processed to facilitate their storage and transport. Leishmania transfected to express cancer and viral vaccine candidates are being prepared accordingly for experimental trials.We have begun to examine PS-mediated photodynamic insecticides (PDI). Mosquito cells take up rose bengal/cyanosine, rendering them light-sensitive to undergo disintegration in vitro, thereby providing a cellular basis for the larvicidal activity seen by the same treatments. Ineffectiveness of phthalocyanines and porphyrins for PDI underscores its requirement for different PS. Differential uptake of PS by insect versus other cells to account for this difference is under study.The ongoing work is patterned after the one-world approach by enlisting the participation of experts in medicinal chemistry, cell/molecular biology, immunology, parasitology, entomology, cancer research, tropical medicine and veterinary medicine. The availability of multidisciplinary expertise is indispensable for implementation of the necessary studies to move the project toward product development
Chemical characterization of extra layers at the interfaces in MOCVD InGaP/GaAs junctions by electron beam methods
Electron beam methods, such as cathodoluminescence (CL) that is based on an electron-probe microanalyser, and (200) dark field and high angle annular dark field (HAADF) in a scanning transmission electron microscope, are used to study the deterioration of interfaces in InGaP/GaAs system with the GaAs QW on top of InGaP. A CL emission peak different from that of the QW was detected. By using HAADF, it is found that the GaAs QW does not exist any longer, being replaced by extra interlayer(s) that are different from GaAs and InGaP because of atomic rearrangements at the interface. The nature and composition of the interlayer(s) are determined by HAADF. Such changes of the nominal GaAs QW can account for the emission observed by CL
Applying Harmonic Optical Microscopy for Spatial Alignment of Atrial Collagen Fibers
BACKGROUND: Atrial fibrosis creates a vulnerable tissue for atrial fibrillation (AF), but the spatial disarray of collagen fibers underlying atrial fibrosis is not fully elucidated. OBJECTIVE: This study hypothesizes that harmonics optical microscopy can illuminate the spatial mal-alignment of collagen fibers in AF via a layer-by-layer approach. PATIENTS AND METHODS: Atrial tissues taken from patients who underwent open-heart surgery were examined by harmonics optical microscopy. Using the two-dimensional Fourier transformation method, a spectral-energy description of image texture was constituted and its entropy was used to quantify the mal-alignment of collagen fibers. The amount of collagen fiber was derived from its area ratio to total atrial tissue in each image. Serum C-terminal pro-collagen pro-peptide (CICP), pro-matrix metalloproteinase-1 (pro-MMP-1), and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) were also evaluated. RESULTS: 46 patients were evaluated, including 20 with normal sinus rhythm and 26 with AF. The entropy of spectral-energy distribution of collagen alignment was significantly higher in AF than that in sinus rhythm (3.97 ± 0.33 vs. 2.80 ± 0.18, p<0.005). This difference was more significant in the permanent AF group. The amount of collagen was also significantly higher in AF patients (0.39 ± 0.13 vs. 0.18 ± 0.06, p<0.005) but serum markers of cardiac fibrosis were not significantly different between the two groups. CONCLUSIONS: Harmonics optical microscopy can quantify the spatial mal-alignment of collagen fibers in AF. The entropy of spectral-energy distribution of collagen alignment is a potential tool for research in atrial remodeling
Reduced Physiological Complexity in Robust Elderly Adults with the APOE ε4 Allele
BACKGROUND:It is unclear whether the loss of physiological complexity during the aging process is due to genetic variations. The APOE gene has been studied extensively in regard to its relationship with aging-associated medical illness. We hypothesize that diminished physiological complexity, as measured by heart rate variability, is influenced by polymorphisms in the APOE allele among elderly individuals. METHODOLOGY/PRINCIPAL FINDINGS:A total of 102 robust, non-demented, elderly subjects with normal functions of daily activities participated in this study (97 males and 5 females, aged 79.2+/-4.4 years, range 72-92 years). Among these individuals, the following two APOE genotypes were represented: epsilon4 non-carriers (n = 87, 85.3%) and epsilon4 carriers (n = 15, 14.7%). Multi-scale entropy (MSE), an analysis used in quantifying complexity for nonlinear time series, was employed to analyze heart-rate dynamics. Reduced physiological complexity, as measured by MSE, was significantly associated with the presence of the APOE epsilon4 allele in healthy elderly subjects, as compared to APOE epsilon4 allele non-carriers (24.6+/-5.5 versus 28.9+/-5.2, F = 9.429, p = 0.003, respectively). CONCLUSIONS/SIGNIFICANCE:This finding suggests a role for the APOE gene in the diminished physiological complexity seen in elderly populations
Determinants of health-related quality of life in elderly in Tehran, Iran
BACKGROUND: As Iran started to experience population ageing, it is important to consider and address the elderly people's needs and concerns, which might have direct impacts on their well-being and quality of life. There have been only a few researches into different aspects of life of the elderly population in Iran including their health-related quality of life. The purpose of this study was to measure health-related quality of life (HRQoL) of elderly Iranians and to identify its some determinant factors. METHODS: This was a cross-sectional survey of a random sample of community residents of Tehran aged 65 years old and over. HRQoL was measured using the Short From Health Survey (SF-36). The study participants were interviewed at their homes. Uni-variate analysis was performed for group comparison and logistic regression analysis conducted to predict quality of life determinants. RESULTS: In all, 400 elderly Iranian were interviewed. The majority of the participants were men (56.5%) and almost half of the participants were illiterate (n = 199, 49.8%). Eighty-five percent of the elderly were living with their family or relatives and about 70% were married. Only 12% of participants evaluated their economic status as being good and most of people had moderate or poor economic status. The mean scores for the SF-36 subscales ranged from 70.0 (SD = 25.9) for physical functioning to 53.5 (SD = 29.1) for bodily pain and in general, the respondents significantly showed better condition on mental component of the SF-36 than its physical component (mean scores 63.8 versus 55.0). Performing uni-variate analysis we found that women reported significantly poorer HRQoL. Multiple logistic regression analysis showed that for the physical component summary score of the SF-36, age, gender, education and economic status were significant determinants of poorer physical health-related quality of life; while for the mental component summary score only gender and economic status were significant determinants of poorer mental health-related quality of life. The analysis suggested that the elderly people's economic status was the most significant predictor of their HRQoL. CONCLUSION: The study findings, although with a small number of participants, indicate that elderly people living in Tehran, Iran suffer from relatively poor HRQoL; particularly elderly women and those with lower education. Indeed to improve quality of life among elderly Iranians much more attention should be paid to all aspects of their life including their health, and economic status
LPS-induced NF??B enhanceosome requires TonEBP/NFAT5 without DNA binding
NF??B is a central mediator of inflammation. Present inhibitors of NF??B are mostly based on inhibition of essential machinery such as proteasome and protein kinases, or activation of nuclear receptors; as such, they are of limited therapeutic use due to severe toxicity. Here we report an LPS-induced NF??B enhanceosome in which TonEBP is required for the recruitment of p300. Increased expression of TonEBP enhances the NF??B activity and reduced TonEBP expression lowers it. Recombinant TonEBP molecules incapable of recruiting p300 do not stimulate NF??B. Myeloid-specific deletion of TonEBP results in milder inflammation and sepsis. We discover that a natural small molecule cerulenin specifically disrupts the enhanceosome without affecting the activation of NF??B itself. Cerulenin suppresses the pro-inflammatory activation of macrophages and sepsis without detectable toxicity. Thus, the NF??B enhanceosome offers a promising target for useful anti-inflammatory agents.ope
- …