87 research outputs found

    Hepatitis B virus: molecular genotypes and HBeAg serological status among HBV-infected patients in the southeast of Brazil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge of HBV genotype is very important for clinical treatment. Studies have suggested possible pathogenic and therapeutic differences among HBV genotypes. The aim of this study was to determine HBV subtypes and genotypes in HBV-infected patients in our region (southeast Brazil) and to correlate results with clinical and histopathological data.</p> <p>Methods</p> <p>One hundred and thirty-nine HBsAg-positive patients were included in the study. All patients were anti-HCV and anti-HIV negative (64% male; mean age 42 ± 14.5 years; range 7-80 years; 84% Caucasian) and were followed up at the University Hospital. A method for genotyping and subtyping HBV by partial HBsAg gene sequencing with primers common to all known genotypes was used. The viral load was measured by Amplicor Monitor assay (Roche).</p> <p>Results</p> <p>HBV genotype A was the most prevalent (55%), while genotypes C, D and F were found in 3%, 38% and 4% of HBV-infected patients, respectively. Among the patients infected by genotype A, 18.3% (14/76) were African descendents and, among the patients infected by genotype D, 11.3% (6/53) were also African descendents. In the four patients infected with genotype C, 2 were Asian descendents and 2 were Caucasians. All (7) genotype F infected patients were Caucasians. Seventy percent of our HBsAg-positive patients were HBeAg negative (62% genotypes A; 26.2% D; 7.1% C and 4.7%F). The viral load of HBV-DNA was about 5 times higher in HBeAg-positive than in HBeAg-negative patients. About 40% of these patients had alanine aminotransferase of up to 1.5 times the normal level. The mean stage of fibrosis in genotype A patients (2.8) was significantly higher than the mean stage of fibrosis in genotype D patients (2.0) (P = 0.0179).</p> <p>Conclusion</p> <p>The genotypes encountered in our HBV-infected patients were apparently a consequence of the types of immigration that occurred in our region, where European and African descendents predominate. The HBeAg-negative status predominated, possibly due to the length of time of infection. The viral load in HBeAg-positive patients was higher than in HBeAg-negative individuals. The fibrosis grade in genotype A-infected patients was more advanced than genotype D-infected patients.</p

    Evidence That Two ATP-Dependent (Lon) Proteases in Borrelia burgdorferi Serve Different Functions

    Get PDF
    The canonical ATP-dependent protease Lon participates in an assortment of biological processes in bacteria, including the catalysis of damaged or senescent proteins and short-lived regulatory proteins. Borrelia spirochetes are unusual in that they code for two putative ATP-dependent Lon homologs, Lon-1 and Lon-2. Borrelia burgdorferi, the etiologic agent of Lyme disease, is transmitted through the blood feeding of Ixodes ticks. Previous work in our laboratory reported that B. burgdorferi lon-1 is upregulated transcriptionally by exposure to blood in vitro, while lon-2 is not. Because blood induction of Lon-1 may be of importance in the regulation of virulence factors critical for spirochete transmission, the clarification of functional roles for these two proteases in B. burgdorferi was the object of this study. On the chromosome, lon-2 is immediately downstream of ATP-dependent proteases clpP and clpX, an arrangement identical to that of lon of Escherichia coli. Phylogenetic analysis revealed that Lon-1 and Lon-2 cluster separately due to differences in the NH2-terminal substrate binding domains that may reflect differences in substrate specificity. Recombinant Lon-1 manifested properties of an ATP-dependent chaperone-protease in vitro but did not complement an E. coli Lon mutant, while Lon-2 corrected two characteristic Lon-mutant phenotypes. We conclude that B. burgdorferi Lons -1 and -2 have distinct functional roles. Lon-2 functions in a manner consistent with canonical Lon, engaged in cellular homeostasis. Lon-1, by virtue of its blood induction, and as a unique feature of the Borreliae, may be important in host adaptation from the arthropod to a warm-blooded host
    corecore