32 research outputs found

    Tetrahydropyrazolo[1,5-a]Pyrimidine-3-Carboxamide and N-Benzyl-6′,7′-Dihydrospiro[Piperidine-4,4′-Thieno[3,2-c]Pyran] analogues with bactericidal efficacy against Mycobacterium tuberculosis targeting MmpL3

    Get PDF
    Mycobacterium tuberculosis is a major human pathogen and the causative agent for the pulmonary disease, tuberculosis (TB). Current treatment programs to combat TB are under threat due to the emergence of multi-drug and extensively-drug resistant TB. As part of our efforts towards the discovery of new anti-tubercular leads, a number of potent tetrahydropyrazolo[1,5-a]pyrimidine-3-ca​rboxamide(THPP) and N-benzyl-6′,7′-dihydrospiro[piperidine-4,​4′-thieno[3,2-c]pyran](Spiro) analogues were recently identified against Mycobacterium tuberculosis and Mycobacterium bovis BCG through a high-throughput whole-cell screening campaign. Herein, we describe the attractive in vitro and in vivo anti-tubercular profiles of both lead series. The generation of M. tuberculosis spontaneous mutants and subsequent whole genome sequencing of several resistant mutants identified single mutations in the essential mmpL3 gene. This ‘genetic phenotype’ was further confirmed by a ‘chemical phenotype’, whereby M. bovis BCG treated with both the THPP and Spiro series resulted in the accumulation of trehalose monomycolate. In vivo efficacy evaluation of two optimized THPP and Spiro leads showed how the compounds were able to reduce >2 logs bacterial cfu counts in the lungs of infected mice

    Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology

    Get PDF
    Diffusion-weighted magnetic resonance imaging (DWI) provides functional information and can be used for the detection and characterization of pathologic processes, including malignant tumors. The recently introduced concept of “diffusion-weighted whole-body imaging with background body signal suppression” (DWIBS) now allows acquisition of volumetric diffusion-weighted images of the entire body. This new concept has unique features different from conventional DWI and may play an important role in whole-body oncological imaging. This review describes and illustrates the basics of DWI, the features of DWIBS, and its potential applications in oncology

    Emerging therapies for breast cancer

    Full text link

    Excessive activation of the TLR9/TGF-β1/PDGF-B pathway in the peripheral blood of patients with systemic lupus erythematosus

    Full text link
    Abstract Background Our aim is to study the existence of the TLR9/TGF-β1/PDGF-B pathway in healthy humans and patients with systemic lupus erythematosus (SLE), and to explore its possible involvement in the pathogenesis of lupus nephritis (LN). Methods Protein levels of the cytokines were detected by ELISA. mRNA levels of the cytokines were analyzed by real-time PCR. MTT assay was used to test the proliferation of mesangial cells under different treatments. Results Compared to healthy controls (N Control = 56), levels of Toll-like receptor (TLR)9, transforming growth factor (TGF)-β1, and platelet-derived growth factor B (PDGF-B) were increased significantly in the peripheral blood of SLE patients (N SLE = 112). Significant correlations between the levels of TLR9, TGF-β1, and PDGF-B were observed in both healthy controls and SLE patients. The levels of TGF-β1 and PDGF-B were greatly enhanced by TLR9 activation in primary cell cultures. The proliferation of mesangial cells induced by the plasma of SLE patients was significantly higher than that induced by healthy controls; PDGF-B was involved in this process. The protein levels of PDGF-B homodimer correlated with the levels of urine protein in SLE patients with LN (N LN =38). Conclusions The TLR9/TGF-β1/PDGF-B pathway exists in humans and can be excessively activated in SLE patients. High levels of PDGF-B may result in overproliferation of mesangial cells in the kidney that are involved in the development of glomerulonephritis and LN. Further studies are necessary to identify TLR9, TGF-β1, and PDGF-B as new therapeutic targets to prevent the development of glomerulonephritis and LN
    corecore