536 research outputs found

    Anodization of nanoporous alumina on impurity-induced hemisphere curved surface of aluminum at room temperature

    Get PDF
    Nanoporous alumina which was produced by a conventional direct current anodization [DCA] process at low temperatures has received much attention in various applications such as nanomaterial synthesis, sensors, and photonics. In this article, we employed a newly developed hybrid pulse anodization [HPA] method to fabricate the nanoporous alumina on a flat and curved surface of an aluminum [Al] foil at room temperature [RT]. We fabricate the nanopores to grow on a hemisphere curved surface and characterize their behavior along the normal vectors of the hemisphere curve. In a conventional DCA approach, the structures of branched nanopores were grown on a photolithography-and-etched low-curvature curved surface with large interpore distances. However, a high-curvature hemisphere curved surface can be obtained by the HPA technique. Such a curved surface by HPA is intrinsically induced by the high-resistivity impurities in the aluminum foil and leads to branching and bending of nanopore growth via the electric field mechanism rather than the interpore distance in conventional approaches. It is noted that by the HPA technique, the Joule heat during the RT process has been significantly suppressed globally on the material, and nanopores have been grown along the normal vectors of a hemisphere curve. The curvature is much larger than that in other literatures due to different fabrication methods. In theory, the number of nanopores on the hemisphere surface is two times of the conventional flat plane, which is potentially useful for photocatalyst or other applications

    Systematic Scoring Balloon Lesion Preparation for Drug-Coated Balloon Angioplasty in Clinical Routine: Results of the PASSWORD Observational Study

    Get PDF
    INTRODUCTION: Scoring balloon angioplasty (SBA) for lumen gain prior to stent implantations or drug-coated balloon angioplasty (DCB) is considered an essential interventional tool for lesion preparation. Recent evidence indicates that SBA may play a pivotal role in enhancing the angiographic and clinical outcomes of DCB angioplasty. METHODS: We studied the systematic use of SBA with a low profile, non-slip element device prior to DCB angioplasty in an unselected, non-randomized patient population. This prospective, all-comers study enrolled patients with de novo lesions as well as in-stent restenotic lesions in bare metal stents (BMS-ISR) and drug-eluting stents (DES-ISR). The primary endpoint was the target lesion failure (TLF) rate at 9 months (ClinicalTrials.gov Identifier NCT02554292). RESULTS: A total of 481 patients (496 lesions) were recruited to treat de novo lesions (78.4%, 377), BMS-ISR (4.0%, 19), and DES-ISR (17.6%, 85). Overall risk factors were acute coronary syndrome (ACS, 20.6%, 99), diabetes mellitus (46.8%, 225), and atrial fibrillation (8.5%, 41). Average lesion lengths were 16.7 +/- 10.4 mm in the de novo group, and 20.1 +/- 8.9 mm (BMS-ISR) and 16.2 +/- 9.8 mm (DES-ISR) in the ISR groups. Scoring balloon diameters were 2.43 +/- 0.41 mm (de novo), 2.71 +/- 0.31 mm (BMS-ISR), and 2.92 +/- 0.42 mm (DES-ISR) whereas DCB diameters were 2.60 +/- 0.39 mm (de novo), 3.00 +/- 0.35 mm (BMS-ISR), and 3.10 +/- 0.43 mm (DES-ISR), respectively. The overall accumulated TLF rate of 3.0% (14/463) was driven by significantly higher target lesion revascularization rates in the BMS-ISR (5.3%, 1/19) and the DES-ISR group (6.0%, 5/84). In de novo lesions, the TLF rate was 1.1% (4/360) without differences between calcified and non-calcified lesions (p = 0.158) and small vs. large reference vessel diameters with a cutoff value of 3.0 mm (p = 0.901). CONCLUSIONS: The routine use of a non-slip element scoring balloon catheter to prepare lesions suitable for drug-coated balloon angioplasty is associated with high procedural success rates and low TLF rates in de novo lesions

    All clinically-relevant blood components transmit prion disease following a single blood transfusion: a sheep model of vCJD

    Get PDF
    Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion

    Patient-centric trials for therapeutic development in precision oncology

    Get PDF
    An enhanced understanding of the molecular pathology of disease gained from genomic studies is facilitating the development of treatments that target discrete molecular subclasses of tumours. Considerable associated challenges include how to advance and implement targeted drug-development strategies. Precision medicine centres on delivering the most appropriate therapy to a patient on the basis of clinical and molecular features of their disease. The development of therapeutic agents that target molecular mechanisms is driving innovation in clinical-trial strategies. Although progress has been made, modifications to existing core paradigms in oncology drug development will be required to realize fully the promise of precision medicine

    Mutations in matrix and SP1 repair the packaging specificity of a Human Immunodeficiency Virus Type 1 mutant by reducing the association of Gag with spliced viral RNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The viral genome of HIV-1 contains several secondary structures that are important for regulating viral replication. The stem-loop 1 (SL1) sequence in the 5' untranslated region directs HIV-1 genomic RNA dimerization and packaging into the virion. Without SL1, HIV-1 cannot replicate in human T cell lines. The replication restriction phenotype in the SL1 deletion mutant appears to be multifactorial, with defects in viral RNA dimerization and packaging in producer cells as well as in reverse transcription of the viral RNA in infected cells. In this study, we sought to characterize SL1 mutant replication restrictions and provide insights into the underlying mechanisms of compensation in revertants.</p> <p>Results</p> <p>HIV-1 lacking SL1 (NLΔSL1) did not replicate in PM-1 cells until two independent non-synonymous mutations emerged: G913A in the matrix domain (E42K) on day 18 postinfection and C1907T in the SP1 domain (P10L) on day 11 postinfection. NLΔSL1 revertants carrying either compensatory mutation showed enhanced infectivity in PM-1 cells. The SL1 revertants produced significantly more infectious particles per nanogram of p24 than did NLΔSL1. The SL1 deletion mutant packaged less HIV-1 genomic RNA and more cellular RNA, particularly signal recognition particle RNA, in the virion than the wild-type. NLΔSL1 also packaged 3- to 4-fold more spliced HIV mRNA into the virion, potentially interfering with infectious virus production. In contrast, both revertants encapsidated 2.5- to 5-fold less of these HIV-1 mRNA species. Quantitative RT-PCR analysis of RNA cross-linked with Gag in formaldehyde-fixed cells demonstrated that the compensatory mutations reduced the association between Gag and spliced HIV-1 RNA, thereby effectively preventing these RNAs from being packaged into the virion. The reduction of spliced viral RNA in the virion may have a major role in facilitating infectious virus production, thus restoring the infectivity of NLΔSL1.</p> <p>Conclusions</p> <p>HIV-1 evolved to overcome a deletion in SL1 and restored infectivity by acquiring compensatory mutations in the N-terminal matrix or SP1 domain of Gag. These data shed light on the functions of the N-terminal matrix and SP1 domains and suggest that both regions may have a role in Gag interactions with spliced viral RNA.</p

    Salvage Cryotherapy for Radiation-Recurrent Prostate Cancer: Outcomes and Complications

    Get PDF
    Potentially curative salvage options for radio-recurrent prostate cancer include prostatectomy, brachytherapy, high-intensity focused ultrasound, and cryotherapy. Salvage cryoablation technology, surgical technique, oncologic outcomes, and complication rates have improved dramatically over the past few decades, shifting this treatment modality from investigational status to an established therapeutic option. In this review, we focus on the most up-to-date oncologic and functional outcomes, as well as complications of salvage cryotherapy for radiation-recurrent prostate cancer

    Y-chromosomal STRs haplotypes in the Taiwanese Paiwan population

    Get PDF
    The distribution of Y-chromosomal short tandem repeat (Y-STR) haplotypes was determined in a population of Taiwanese Paiwan aboriginals. Using 17 Y-STR markers, a total of 135 haplotypes were observed, 102 of which were unique. The overall haplotype diversity for the 17 Y-STR loci tested was 0.9922 and the discrimination capacity was 0.6490. In addition, three novel intermediate alleles at the DYS448 locus were also found

    Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS): following the water trail from the interstellar medium to oceans

    Get PDF
    Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS) is a space-based, MIDEX-class mission concept that employs a 17-meter diameter inflatable aperture with cryogenic heterodyne receivers, enabling high sensitivity and high spectral resolution (resolving power ≥106) observations at terahertz frequencies. OASIS science is targeting submillimeter and far-infrared transitions of H2O and its isotopologues, as well as deuterated molecular hydrogen (HD) and other molecular species from 660 to 80 μm, which are inaccessible to ground-based telescopes due to the opacity of Earth’s atmosphere. OASIS will have <20x the collecting area and ~5x the angular resolution of Herschel, and it complements the shorter wavelength capabilities of the James Webb Space Telescope. With its large collecting area and suite of terahertz heterodyne receivers, OASIS will have the sensitivity to follow the water trail from galaxies to oceans, as well as directly measure gas mass in a wide variety of astrophysical objects from observations of the ground-state HD line. OASIS will operate in a Sun-Earth L1 halo orbit that enables observations of large numbers of galaxies, protoplanetary systems, and solar system objects during the course of its 1-year baseline mission. OASIS embraces an overarching science theme of “following water from galaxies, through protostellar systems, to oceans.” This theme resonates with the NASA Astrophysics Roadmap and the 2010 Astrophysics Decadal Survey, and it is also highly complementary to the proposed Origins Space Telescope’s objectives
    corecore