58 research outputs found

    Intratumor genetic heterogeneity in squamous cell carcinoma of the oral cavity

    Full text link
    BackgroundWe sought to evaluate intratumor heterogeneity in squamous cell carcinoma of the oral cavity (OCC) and specifically determine the effect of physical separation and histologic differentiation within the same tumor.MethodsWe performed whole exome sequencing on five biopsy sites—two from well‐differentiated, two from poorly differentiated regions, and one from normal parenchyma—from five primary OCC specimens.ResultsWe found high levels of intratumor heterogeneity and, in four primary tumors, identified only 0 to 2 identical mutations in all subsites. We found that the heterogeneity inversely correlated with physical separation and that pairs of well‐differentiated samples were more similar to each other than analogous poorly differentiated specimens. Only TP53 mutations, but not other purported “driver mutations” in head and neck squamous cell carcinoma, were found in multiple biopsy sites.ConclusionThese data highlight the challenges to characterization of the mutational landscape of OCC with single site biopsy and have implications for personalized medicine.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150549/1/hed25719.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150549/2/hed25719_am.pd

    Highlights of the society for immunotherapy of cancer (SITC) 27th annual meeting

    Get PDF
    The 27th annual meeting of the Society for Immunotherapy of Cancer (SITC) was held on October 26-28, 2012 in North Bethesda, Maryland and the highlights of the meeting are summarized. The topics covered at this meeting included advances in cancer treatment using adoptive cell therapy (ACT), oncolytic viruses, dendritic cells (DCs), immune check point modulators and combination therapies. Advances in immune editing of cancer, immune modulation by cancer and the tumor microenvironment were also discussed as were advances in single cell analysis and the manufacture and potency testing of tumor infiltrating lymphocytes (TIL)

    Improved Innate and Adaptive Immunostimulation by Genetically Modified HIV-1 Protein Expressing NYVAC Vectors.

    Get PDF
    Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines
    corecore