64 research outputs found

    Consensus statement on the diagnosis of multiple system atrophy

    Full text link
    We report the results of a consensus conference on the diagnosis of multiple system atrophy (MSA). We describe the clinical features of the disease, which include four domains: autonomic failure/urinary dysfunction, parkinsonism and cerebellar ataxia, and corticospinal dysfunction. We set criteria to define the relative importance of these features. The diagnosis of possible MSA requires one criterion plus two features from separate domains. The diagnosis of probable MSA requires the criterion for autonomic failure/urinary dysfunction plus poor levodopa responsive parkinsonism or cerebellar ataxia. The diagnosis of definite MSA requires pathological confirmation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41757/1/10286_2006_Article_BF02309628.pd

    Functional Energetics of CD4+-Cellular Immunity in Monoclonal Antibody-Associated Progressive Multifocal Leukoencephalopathy in Autoimmune Disorders

    Get PDF
    BACKGROUND: Progressive multifocal leukoencephalopathy (PML) is an opportunistic central nervous system- (CNS-) infection that typically occurs in a subset of immunocompromised individuals. An increasing incidence of PML has recently been reported in patients receiving monoclonal antibody (mAb) therapy for the treatment of autoimmune diseases, particularly those treated with natalizumab, efalizumab and rituximab. Intracellular CD4(+)-ATP-concentration (iATP) functionally reflects cellular immunocompetence and inversely correlates with risk of infections during immunosuppressive therapy. We investigated whether iATP may assist in individualized risk stratification for opportunistic infections during mAb-treatment. METHODOLOGY/PRINCIPAL FINDINGS: iATP in PHA-stimulated, immunoselected CD4(+)-cells was analyzed using an FDA-approved assay. iATP of mAb-associated PML (natalizumab (n = 8), rituximab (n = 2), efalizumab (n = 1)), or other cases of opportunistic CNS-infections (HIV-associated PML (n = 2), spontaneous PML, PML in a psoriasis patient under fumaric acids, natalizumab-associated herpes simplex encephalitis (n = 1 each)) was reduced by 59% (194.5±29 ng/ml, mean±SEM) in comparison to healthy controls (HC, 479.9±19.8 ng/ml, p<0.0001). iATP in 14 of these 16 patients was at or below 3(rd) percentile of healthy controls, similar to HIV-patients (n = 18). In contrast, CD4(+)-cell numbers were reduced in only 7 of 15 patients, for whom cell counts were available. iATP correlated with mitochondrial transmembrane potential (ΔΨ(m)) (iATP/ΔΨ(m)-correlation:tau = 0.49, p = 0.03). Whereas mean iATP of cross-sectionally analysed natalizumab-treated patients was unaltered (448.7±12 ng/ml, n = 150), iATP was moderately decreased (316.2±26.1 ng/ml, p = 0.04) in patients (n = 7) who had been treated already during the pivotal phase III trials and had received natalizumab for more than 6 years. 2/92 (2%) patients with less than 24 months natalizumab treatment revealed very low iATP at or below the 3(rd) percentile of HC, whereas 10/58 (17%) of the patients treated for more than 24 months had such low iATP-concentrations. CONCLUSION: Our results suggest that bioenergetic parameters such as iATP may assist in risk stratification under mAb-immunotherapy of autoimmune disorders

    Differential Deployment of REST and CoREST Promotes Glial Subtype Specification and Oligodendrocyte Lineage Maturation

    Get PDF
    The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a master transcriptional regulator that binds to numerous genomic RE1 sites where it acts as a molecular scaffold for dynamic recruitment of modulatory and epigenetic cofactors, including corepressor for element-1-silencing transcription factor (CoREST). CoREST also acts as a hub for various cofactors that play important roles in epigenetic remodeling and transcriptional regulation. While REST can recruit CoREST to its macromolecular complex, CoREST complexes also function at genomic sites independently of REST. REST and CoREST perform a broad array of context-specific functions, which include repression of neuronal differentiation genes in neural stem cells (NSCs) and other non-neuronal cells as well as promotion of neurogenesis. Despite their involvement in multiple aspects of neuronal development, REST and CoREST are not believed to have any direct modulatory roles in glial cell maturation.We challenged this view by performing the first study of REST and CoREST in NSC-mediated glial lineage specification and differentiation. Utilizing ChIP on chip (ChIP-chip) assays, we identified distinct but overlapping developmental stage-specific profiles for REST and CoREST target genes during astrocyte (AS) and oligodendrocyte (OL) lineage specification and OL lineage maturation and myelination, including many genes not previously implicated in glial cell biology or linked to REST and CoREST regulation. Amongst these factors are those implicated in macroglial (AS and OL) cell identity, maturation, and maintenance, such as members of key developmental signaling pathways and combinatorial transcription factor codes.Our results imply that REST and CoREST modulate not only neuronal but also glial lineage elaboration. These factors may therefore mediate critical developmental processes including the coupling of neurogenesis and gliogenesis and neuronal-glial interactions that underlie synaptic and neural network plasticity and homeostasis in health and in specific neurological disease states

    Intracellular Trafficking Considerations in the Development of Natural Ligand-Drug Molecular Conjugates for Cancer

    Get PDF
    Overexpressed receptors, characteristic of many cancers, have been targeted by various researchers to achieve a more specific treatment for cancer. A common approach is to use the natural ligand for the overexpressed receptor as a cancer-targeting agent which can deliver a chemically or genetically conjugated toxic molecule. However, it has been found that the therapeutic efficacy of such ligand-drug molecular conjugates can be limited, since they naturally follow the intracellular trafficking pathways of the endogenous ligands. Therefore, a thorough understanding of the intracellular trafficking properties of these ligands can lead to novel design criteria for engineering ligands to be more effective drug carriers. This review presents a few commonly used ligand/receptor systems where intracellular trafficking considerations can potentially improve the therapeutic efficacy of the ligand-drug molecular conjugates
    corecore