29 research outputs found

    Comparative LCA technology improvement opportunities for a 1.5 MW wind turbine in the context of an offshore wind farm

    Get PDF
    Wind energy is playing an increasingly important role in the development of cleaner and more efficient energy technologies leading to projections in reliability and performance of future wind turbine designs. This paper presents life cycle assessment (LCA) results of design variations for a 1.5 MW wind turbine due to the potential for advances in technology to improve the performance of a 1.5 MW wind turbine. Five LCAs have been conducted for design variants of a 1.5 MW wind turbine. The objective is to evaluate potential environmental impacts per kilowatt hour of electricity generated for a 114 MW onshore wind farm. Results for the baseline turbine show that higher contributions to impacts were obtained in the categories Ozone Depletion Potential, Marine Aquatic Eco-toxicity Potential, Human Toxicity Potential and Terrestrial Eco-toxicity Potential compared to Technology Improvement Opportunities (TIOs) 1 to 4. Compared to the baseline turbine, TIO 1 showed increased impact contributions to Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential and Photochemical Ozone Creation Potential, and TIO 2 showed an increase in contributions to Abiotic Depletion Potential, Acidification Potential and Global Warming Potential. Additionally, lower contributions to all the environmental categories were observed for TIO 3 while increased contributions towards Abiotic Depletion Potential and Global Warming Potential were noted for TIO 4. A comparative LCA study of wind turbine design variations for a particular power rating has not been explored in the literature. This study presents new insight into the environmental implications related with projected wind turbine design advancements

    Life Cycle Assessment for Ordinary and Frost-Resistant Concrete

    No full text
    Part 2: Sustainability and Production ManagementInternational audienceThis is an environmental study on concrete that follows the standard protocol of life cycle assessment (LCA) for two types of concrete, ordinary and frost-resistant concrete, with a focus on the superplasticizers used as admixtures. The use phase is not included in this study and the concrete is assumed to be inert during this phase. The results show that production of the raw material (especially cement) and the transports involved in the life cycle of concrete are the main contributors to the total environmental impacts. The environmental impact of frost-resistant concrete is between 24–41% higher than that of ordinary concrete due to its higher content of cement. Superplasticizers contribute with approximately 0.4–10.4% of the total environmental impact of concrete. Also, we have concluded that the low amount of leakage of superplasticizers from concrete leads to a low risk for the environment and humans

    How to create a business relevant LCA

    No full text
    Facing issues related to innovative production and public requirement in sustainability, companies expect to develop an effective tool to integrate environmental aspects into their business strategies at product design stage. Although life cycle assessment is commonly used to evaluate the environmental impacts of products or services, it is time consuming, expensive and may produce irrelevant information for business decision making. Eco-design approach, as alternative, requires less efforts for data acquisition and evaluation, and utilises a wide range of indicators that meet business demand. This study develops a matrix-based tool to capture environmental information related to business according to industry engagement. This life cycle thinking-based approach focuses on more relevant environmental information, and provides effectively data to support business strategy. In addition, this approach is practical and flexible to be used at the early design stage where data capture is generally difficult. Finally, it helps the managers to identify data gaps, so that it stimulates further investments in searching more targeted data

    How to create a business relevant LCA

    No full text
    Facing issues related to innovative production and public requirement in sustainability, companies expect to develop an effective tool to integrate environmental aspects into their business strategies at product design stage. Although life cycle assessment is commonly used to evaluate the environmental impacts of products or services, it is time consuming, expensive and may produce irrelevant information for business decision making. Eco-design approach, as alternative, requires less efforts for data acquisition and evaluation, and utilises a wide range of indicators that meet business demand. This study develops a matrix-based tool to capture environmental information related to business according to industry engagement. This life cycle thinking-based approach focuses on more relevant environmental information, and provides effectively data to support business strategy. In addition, this approach is practical and flexible to be used at the early design stage where data capture is generally difficult. Finally, it helps the managers to identify data gaps, so that it stimulates further investments in searching more targeted data

    Comparative life cycle assessment of smartphone reuse: repurposing vs. refurbishment

    No full text
    Purpose: Waste management for end-of-life (EoL) smartphones is a growing problem due to their high turnover rate and concentration of toxic chemicals. The versatility of modern smartphones presents an interesting alternative waste management strategy: repurposing. This paper investigates the environmental impact of smartphone repurposing as compared to traditional refurbishing using Life Cycle Assessment (LCA). Methods: A case study of repurposing was conducted by creating a smartphone "app" that replicates the functionality of an in-car parking meter. The environmental impacts of this prototype were quantified using waste management LCA methodology. Studied systems included three waste management options: traditional refurbishment, repurposing using battery power, and repurposing using a portable solar charger. The functional unit was defined as the EoL management of a used smartphone. Consequential system expansion was employed to account for secondary functions provided; avoided impacts from displaced primary products were included. Impacts were calculated in five impact categories. Break-even displacement rates were calculated and sensitivity to standby power consumption were assessed. Results and discussion: LCA results showed that refurbishing creates the highest environmental impacts of the three reuse routes in every impact category except ODP. High break-even displacement rates suggest that this finding is robust within a reasonable range of primary cell phone displacement. The repurposed smartphone in-car parking meter had lower impacts than the primary production parking meter. Impacts for battery-powered devices were dominated by use-phase charging electricity, whereas solar-power impacts were concentrated in manufacturing. Repurposed phones using battery power had lower impacts than those using solar power, however, standby power sensitivity analysis revealed that solar power is preferred if the battery charger is left plugged-in more than 20 % of the use period. Conclusions: Our analysis concludes that repurposing represents an environmentally preferable EoL option to refurbishing for used smartphones. The results suggest two generalizable findings. First, primary product displacement is a major factor affecting whether any EoL strategy is environmentally beneficial. The benefit depends not only on what is displaced, but also on how much displacement occurs; in general, repurposing allows freedom to target reuse opportunities with high "displacement potential." Second, the notion that solar power is preferable to batteries is not always correct; here, the rank-order is sensitive to assumptions about user behavior. © 2014 Springer-Verlag
    corecore